计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 375-383.doi: 10.11896/jsjkx.240500033
李远博1,2, 扈红超1, 杨晓晗1, 郭威1, 刘文彦1,3
LI Yuanbo1,2, HU Hongchao1, YANG Xiaohan1, GUO Wei1, LIU Wenyan1,3
摘要: 随着微服务和容器技术的快速发展,云中执行的应用可以由多个具有依赖关系的微服务共同完成。然而,基于容器云的微服务由于共享资源而面临许多安全威胁。云中的攻击者可以通过侧通道、容器逃逸方式直接或间接地破坏它们,从而导致产生不正确的输出结果,这将给云中的用户带来巨大的损失。因此,在容器云环境下,提出了一种基于深度强化学习的微服务工作流容侵调度算法(ITSAMW),以提高系统的安全性。首先,该算法为每个微服务构建3个副本,并利用投票裁决机制保证安全性。算法研究了如何调度这些微服务副本,并证明了微服务入侵容忍调度需要满足的位置约束条件。其次,构建了微服务调度和完成时延模型,重新对微服务的安全调度问题进行了形式化描述定义,并利用深度强化学习的方法对问题进行了求解。最后,为了验证算法的有效性,使用Kubernetes搭建了容器云仿真平台,并使用入侵容忍度、完成时延和负载均衡性来对其进行评估。实验结果表明,与现有方法相比,ITSAMW在完成时延增加了17.6%的条件下,入侵容忍度提高了28.1%,负载均衡度降低了13.7%。
中图分类号:
[1]ZHOU X,PENG X,XIE T,et al.Fault Analysis and Debugging of Microservice Systems:Industrial Survey,Benchmark System,and Empirical Study[J].IEEE Transactions on Software Engineering,2021,47(2):243-260. [2]KHAN M,TAHERI J,Al-DULAIMY A,et al.PerfSim:A Performance Simulator for Cloud Native Computing[J].IEEE Transactions on Cloud Computing,2021,11(2):1395-1413. [3]AROUK O,NIKAEIN N.Kube5G:A Cloud-Native 5G Service Platform[C]// Proceedings of Global Communications Confe-rence(GLOBECOM).IEEE,2020:1-8. [4]ZHAO P,WU L,HONG Z,et al.Research on Multi-cloud Access Control Policy Integration Framework[J].China Communications,2019,16(9):222-234. [5]PEREIRA-VALE A,FERNANDEZ E B,MONGE R,et al.Security in Microservice-based Systems:A Multivocal Literature Review[J].Computers & Security,2021,103:102200. [6]LI C,LIU J,WANG M,et al.Fault-tolerant Scheduling and Data Placement for Scientific Workflow Processing in Geo-distributed Clouds[J].Journal of Systems and Software,2022,187:111227. [7]WEN Z,QASHA R,LI Z,et al.Dynamically Partitioning Workflow Over Federated Clouds for Optimising the Monetary Cost and Handling Run-time Failures[J].IEEE Transactions on Cloud Computing,2020,8(4):1093-1107. [8]ZHOU X,ZHANG G,SUN J,et al.Minimizing Cost andMakespan for Workflow Scheduling in Cloud Using Fuzzy Domi-nance Sort Based HEFT[J].Future Generation Computer Systems,2019,93:278-289. [9]WU Q,ISHIKAWA F,ZHU Q,et al.Deadline-Constrained Cost Optimization Approaches for Workflow Scheduling in Clouds[J].IEEE Transactions on Parallel and Distributed Systems,2017,28(12):3401-3412. [10]ARABNEJAD V,BUBENDORFER K,NG B.Dynamic Multi-workflow Scheduling:A Deadline and Cost-aware Approach for Commercial Clouds[J].Future Generation Computer Systems,2019,100:98-108. [11]ZHOU Z,YU S,CHEN W,et al.CE-IoT:Cost-effective Cloud-edge Resource Provisioning for Heterogeneous IoT Applications[J].IEEE Internet of Things Journal,2020,7(9):8600-8614. [12]WANG S,DING Z,JIANG C.Elastic Scheduling for Microservice Applications in Clouds[J].IEEE Transactions on Parallel and Distributed Systems,2021,32(1):98-115. [13]LI W,LI X,RUIZ R.Scheduling Microservice-based Workflows to Containers in on-demand Cloud Resources[C]//2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design(CSCWD).IEEE,2021:61-66. [14]YAO G,DING Y,REN L,et al.An Immune System-inspiredRescheduling Algorithm for Workflow in Cloud Systems[J].Knowledge-Based Systems,2016,99:39-50. [15]GILL S S,BUYYA R.SECURE:Self-protection Approach in Cloud Resource Management[J].IEEE Cloud Computing,2018,5(1):60-72. [16]YAO G,DING Y,HAO K.Using Imbalance Characteristic for Fault-tolerant Workflow Scheduling in Cloud Systems[J].IEEE Transactions on Parallel and Distributed Systems,2017,28(12):3671-3683. [17]ZHOU C,WANG T,LI L,et al.Makespan and Security-aware Workflow Scheduling for Cloud Service Cost Minimization Using Firefly Optimizer[C]//International Conference on Algorithms and Architectures for Parallel Processing.Springer Nature Switzerland,2023:620-641. [18]MENG S,HUANG W,YIN X,et al.Security-aware DynamicScheduling for Real-time Optimization in Cloud-based Industrial Applications[J].IEEE Transactions on Industrial Informatics,2021,17(6):4219-4228. [19]DING Y,YAO G,HAO K.Fault-tolerant Elastic Scheduling Algorithm for Workflow in Cloud Systems[J].Information Sciences,2018,393:47-65. [20]WANG Y,GUO Y,GUO Z,et al.Protecting Scientific Workflows in Clouds with an Intrusion Tolerant System[J].IET Information Security,2020,14(2):157-165. [21]LI H,GUO Y,SUN P,et al.An Optimal Defensive Deception Framework for the Container-based Cloud with Deep Reinforcement Learning[J].IET Information Security,2022,16(3):178-192. [22]ZHOU D,CHEN H,CHENG G.A Security Containers Placement Algorithm Based on DQN for Microservices to Defend Against Co-Resident Threat[C]//2023 8th International Confe-rence on Computer and Communication Systems(ICCCS).IEEE,2023:683-688. |
|