计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 336-345.doi: 10.11896/jsjkx.240400073
张铭豪1,2, 肖博怀1,2, 郑松3,4, 陈星1,2
ZHANG Minghao1,2, XIAO Bohuai1,2, ZHENG Song3,4, CHEN Xing1,2
摘要: 随着云边协同环境中的计算需求日益多样化,以虚拟机为最小资源粒度的传统计算架构暴露出灵活性不足、成本效益低下等问题。无服务器计算作为一种具有出色扩展性与灵活性的新兴计算架构,为解决上述问题提供了新的思路。针对云边协同环境下面向负载时间窗口的无服务器应用资源分配问题,提出了一种规则引导下基于协同进化算法的无服务器应用资源分配方法RARCA。该方法考虑某资源调整时刻及未来一段时间的工作负载情况,运用规则引导的分布式资源更新机制,实现计算资源的动态分配与调整。同时,协同进化机制的信息共享与协同优化能力,使得算法能够高效搜索全局最优的资源分配方案,显著提升了整体资源分配方案的实时性和有效性。实验结果表明,RARCA能够以秒级的决策时间获得更优质的资源分配方案,相比基准方法,在资源分配的性能上提高了2.8%~14.5%。
中图分类号:
[1]ALWARAFY A,AL-THELAYA K A,ABDALLAH M,et al.A survey on security and privacy issues in edge-computing-assisted internet of things[J].IEEE Internet of Things Journal,2020,8(6):4004-4022. [2]RAZA M R,VAROL A,VAROL N.Cloud and fog computing:A survey to the concept and challenges[C]//2020 8th International Symposium on Digital Forensics and Security(ISDFS).2020:1-6. [3]HAO Y,JIANG Y,CHEN T,et al.iTaskOffloading:Intelligenttask offloading for a cloud-edge collaborative system[J].IEEE Network,2019,33(5):82-88. [4]CHADWICK D W,FAN W,COSTANTINO G,et al.A cloud-edge based data security architecture for sharing and analysing cyber threat information[J].Future Generation Computer Systems,2020,102:710-722. [5]HABIBI P,FARHOUDI M,KAZEMIAN S,et al.Fog computing:a comprehensive architectural survey[J].IEEE Access,2020,8:69105-69133. [6]CHEN X,ZHENG S.Resource allocation and task offloadingstrategy base on hybrid simulated annealing-binary particle swarm optimization in cloud-edge collaborative system[C]//2022 IEEE 5th Advanced Information Management,Communicates,Electronic and Automation Control Conference.2022:379-383. [7]VAN EYK E,GROHMANN J,EISMANN S,et al.The spec-rg reference architecture for faas:from microservices and contai-ners to serverless platforms[J].IEEE Internet Computing,2019,23(6):7-18. [8]EIVY A,WEINMAN J.Be wary of the economics of "serverless" cloud computing[J].IEEE Cloud Computing,2017,4(2):6-12. [9]WU M,MI Z,XIA Y.A survey on serverless computing and its implications for jointcloud computing[C]//2020 IEEE International Conference on Joint Cloud Computing.2020:94-101. [10]CHEN Z,HU J,MIN G,et al.Towards accurate prediction for high-dimensional and highly-variable cloud workloads with deep learning[J].IEEE Transactions on Parallel and Distributed Systems,2019,31(4):923-934. [11]KIM I K,WANG W,QI Y,et al.Forecasting cloud application workloads with cloudinsight for predictive resource management[J].IEEE Transactions on Cloud Computing,2020,10(3):1848-1863. [12]YANG L J,CHEN X,HUANG Y H.A PSO-GA-based adaptive resource allocation method for cloud software services oriented to load-time window[J].Journal of Chinese Computer Systems,2021,42(5):953-960. [13]ZHOU H,WU T,CHEN X,et al.Reverse auction-based computation offloading and resource allocation in mobile cloud-edge computing[J].IEEE Transactions on Mobile Computing,2022,22(10):6144-6159. [14]YUAN H,ZHOU M C.Profit-maximized collaborative computation offloading and resource allocation in distributed cloud and edge computing systems[J].IEEE Transactions on Automation Science and Engineering,2020,18(3):1277-1287. [15]GAN D,GE X,LI Q.An optimal transport-based federated reinforcement learning approach for resource allocation in cloud-edge collaborative IoT[J].IEEE Internet of Things Journal,2023,11(2):2407-2419. [16]LI Y,LIN Y,WANG Y,et al.Serverless computing:state-of-the-art,challenges and opportunities[J].IEEE Transactions on Services Computing,2022,16(2):1522-1539. [17]JARACHANTHAN J,CHEN L,XU F,et al.Astrea:Auto-serverless analytics towards cost-efficiency and QoS-awareness[J].IEEE Transactions on Parallel and Distributed Systems,2022,33(12):3833-3849. [18]ASCIGIL O,TASIOPOULOS A G,PHAN T K,et al.Resource provisioning and allocation in function-as-a-service edge-clouds[J].IEEE Transactions on Services Computing,2021,15(4):2410-2424. [19]KIM Y K,HOSEINYFARAHABADY M R,LEE Y C,et al.Automated fine-grained cpu cap control in serverless computing platform[J].IEEE Transactions on Parallel and Distributed Systems,2020,31(10):2289-2301. [20]RAZA A,AKHTAR N,ISAHAGIAN V,et al.Configuration and placement of serverless applications using statistical lear-ning[J].IEEE Transactions on Network and Service Management,2023,20(2):1065-1077. [21]ABAD C L,BOZA E F,VAN EYK E.Package-aware scheduling of faas functions[C]//Companion of the 2018 ACM/SPEC International Conference on Performance Engineering.2018:101-106. [22]CHEN Z,YANG L,HUANG Y,et al.Pso-ga-based resource allocation strategy for cloud-based software services with workload-time windows[J].IEEE Access,2020,8:151500-151510. [23]MESTRE J.Greedy in approximation algorithms[C]//European Symposium on Algorithms.2006:528-539. [24]WANG S,ZHAO Y,HUANG L,et al.QoS prediction for servi-ce recommendations in mobile edge computing[J].Journal of Parallel and Distributed Computing,2019,127:134-144. [25]XIE R,GU D,TANG Q,et al.Workflow scheduling in serverless edge computing for the industrial internet of things:a lear-ning approach[J].IEEE Transactions on Industrial Informatics,2023,19(7):8242-8252. [26]AKHTAR N,RAZA A,ISHAKIAN V,et al.COSE:Configuring serverless functions using statistical learning[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications,2020:129-138. [27]HU Q,CAI Y,YU G,et al.Joint offloading and trajectory design for UAV-enabled mobile edge computing systems[J].IEEE Internet of Things Journal,2018,6(2):1879-1892. [28]CHEN X,WANG H,MA Y,et al.Self-adaptive resource allocation for cloud-based software services based on iterative QoS prediction model[J].Future Generation Computer Systems,2020,105:287-296. [29]CHEN X,YANG L,CHEN Z,et al.Resource allocation with workload-time windows for cloud-based software services:a deep reinforcement learning approach[J].IEEE Transactions on Cloud Computing,2023,11(2):1871-1885. [30]LI H,WANG D,ZHOU M C,et al.Multi-swarm co-evolutionbased hybrid intelligent optimization for bi-objective multi-workflow scheduling in the cloud[J].IEEE Transactions on Parallel and Distributed Systems,2021,33(9):2183-2197. [31]SHI Y,EBERHART R.A modified particle swarm optimize[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings.IEEE World Congress on Computational Intelligence(Cat.No.98TH8360),1998:69-73. [32]ZHOU B,XIE S,WANG F,et al.Multi-step predictive compensated intelligent control for aero-engine wireless networked system with random scheduling[J].Journal of the Franklin Institute,2020,357(10):6154-6174. |
|