计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 241100058-7.doi: 10.11896/jsjkx.241100058
周磊1,2, 石怀峰1,2,3, 杨恺1,2, 王睿2,4, 刘超凡1,2
ZHOU Lei1,2, SHI Huaifeng1,2,3, YANG Kai1,2, WANG Rui2,4, LIU Chaofan1,2
摘要: 随着5G基站数量的倍增和接入终端数量的剧增,网络流量的规模将呈现指数级增长,网络流量则呈现出显著的非线性、多模态和突发性特征,对网络资源分配和优化提出了新的挑战。为应对这些挑战,提出了一种基于大语言模型(LLM)的网络流量预测方法(NT-LLM)。该方法通过重编程技术,将传统的网络流量数据转换为适合LLM处理的形式,从而充分利用LLM在跨任务推理和复杂模式识别方面的优势,仅需少量训练数据和较短训练周期,就能够高效处理不同时间尺度的复杂网络流量模式。实验结果表明,与LSTM,Informer,Transformer等基线模型相比,NT-LLM模型在多个区域的网络流量预测均方误差显著下降,分别降低了44.26%,56.78%和51.36%。此外,该方法无需对预训练的语言模型进行大规模微调,具有较强的扩展性和适应性,能够在减少计算资源消耗的同时保持高精度的预测能力。
中图分类号:
[1]DENG L,RUAN K,CHEN X,et al.An IP network traffic prediction method based on ARIMA and n-BEATS[C]//International Conference on Power,Intelligent Computing and Systems(ICPICS).IEEE,2022:336-341. [2]WANG J.A process level network traffic prediction algorithm based on ARIMA model in smart substation[C]//International Conference on Signal Processing,Communication and Computing(ICSPCC 2013).IEEE,2013:1-5. [3]ABBASI M,SHAHRAKI A,TAHERKORDI A.Deep learning for network traffic monitoring and analysis(NTMA):A survey[J].Computer Communications,2021,170:19-41. [4]TAHAEI H,AFIFI F,ASEMI A,et al.The rise of traffic classification in IoT networks:A survey[J].Journal of Network and Computer Applications,2020,154:102538. [5]DAMASEVICIUS R,VENCKAUSKAS A,GRIGALIUNAS S,et al.LITNET-2020:An annotated real-world network flow dataset for network intrusion detection[J].Electronics,2020,9(5):800. [6]SATRIO C B A,DARMAWAN W,NADIA B U,et al.Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET[J].Procedia Computer Science,2021,179:524-532. [7]YAN Q,SHENG H,RONG H.Research on Modeling and Forecasting of Network Traffic Data with Alpha Distribution Noise Based on FARIMA Model[C]//IOP Conference Series:Mate-rials Science and Engineering.IOP Publishing,2020,750(1):012149. [8]MÜNGEN A A,TAŞ İ Ç.An investigation about traffic prediction by using ANN and SVM algorithms[C]//International Conference on Electrical,Communication,and Computer Engineering(ICECCE).IEEE,2021:1-6. [9]STEPANOV N,ALEKSEEVA D,OMETOV A,et al.Applying machine learning to LTE traffic prediction:Comparison of bagging,random forest,and SVM[C]//International Congress on Ultra Modern Telecommunications and Control Systems and Workshops(ICUMT).IEEE,2020:119-123. [10]LIU X,FANG X,QIN Z,et al.A short-term forecasting algorithm for network traffic based on chaos theory and SVM[J].Journal of Network and Systems Management,2011,19:427-447. [11]ULANOWICZ B,DOPART D,KNAPINSKA A,et al.Combining Random Forest and Linear Regression to Improve Network Traffic Prediction[C]//2023 23rd International Conference on Transparent Optical Networks(ICTON).IEEE,2023:1-4. [12]SEPASGOZZAR S S,PIERRE S.Network traffic predictionmodel considering road traffic parameters using artificial intelligence methods in VANET[J].IEEE Access,2022,10:8227-8242. [13]STRYCZEK S,NATKANIEC M.Internet threat detection insmart grids based on network traffic analysis using lstm,if,and svm[J].Energies,2022,16(1):329. [14]BI J,ZHANG X,YUAN H,et al.A hybrid prediction method for realistic network traffic with temporal convolutional network and LSTM[J].IEEE Transactions on Automation Science and Engineering,2021,19(3):1869-1879. [15]BI J,YUAN H,XU K,et al.Large-scale network traffic prediction with LSTM and temporal convolutional networks[C]//2022 International Conference on Robotics and Automation(ICRA).IEEE,2022:3865-3870. [16]WAN X,LIU H,XU H,et al.Network traffic prediction based on LSTM and transfer learning[J].IEEE Access,2022,10:86181-86190. [17]LIU B,TANG X,CHENG J,et al.Traffic flow combinationforecasting method based on improved LSTM and ARIMA[J].International Journal of Embedded Systems,2020,12(1):22-30. [18]MA X,ZHONG H,LI Y,et al.Forecasting transportation network speed using deep capsule networks with nested LSTM models[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(8):4813-4824. [19]GUO Y,PENG Y,HAO R,et al.Capturing spatial-temporalcorrelations with Attention based Graph Convolutional Network for network traffic prediction[J].Journal of Network and Computer Applications,2023,220:103746. [20]BRIMOS P,KARAMANOU A,KALAMPOKIS E,et al.Graph neural networks and open-government data to forecast traffic flow[J].Information,2023,14(4):228. [21]LI F,FENG J,YAN H,et al.Dynamic graph convolutional recurrent network for traffic prediction:Benchmark and solution[J].ACM Transactions on Knowledge Discovery from Data,2023,17(1):1-21. [22]XIE Y,JIN C.Evaluations of Multi-Step Traffic Flow Prediction Models Based on Graph Neural Networks[C]//2024 6th International Conference on Communications,Information System and Computer Engineering(CISCE).IEEE,2024:1100-1104. [23]HU Y,ZHOU Y,SONG J,et al.Citywide mobile traffic forecas-ting using spatial-temporal downsampling transformer neural networks[J].IEEE Transactions on Network and Service Mana-gement,2022,20(1):152-165. [24]YIN K,YANG Y,YAO C,et al.Long-term prediction of network security situation through the use of the transformer-based model[J].IEEE Access,2022,10:56145-56157. [25]ZHAO L,YUAN H,XU K,et al.Hybrid network attack prediction with Savitzky-Golay filter-assisted informer[J].Expert Systems with Applications,2024,235:121126. [26]ABBASI M,SHAHRAKI A,TAHERKODI A.Deep learning for network traffic monitoring and analysis(NTMA):A survey[J].Computer Communications,2021,170:19-41. [27]ALIZADEH M,BEHESHTI M T H,RAMEZANI A,et al.Network traffic forecasting based on fixed telecommunication data using deep learning[C]//2020 6th Iranian Conference on Signal Processing and Intelligent Systems(ICSPIS).IEEE,2020:1-7. [28]QIU L,JIN L,CHAI L.Network traffic prediction based onspatio-temporal graph convolutional network[C]//2023 42nd Chinese Control Conference(CCC).IEEE,2023:8426-8431. [29]LI X,WEI D,MENG L,et al.Prediction of Electricity Network Traffic Based on BP NeuralNetwork-Simulated Annealing Algorithm[C]//2022 4th International Conference on Smart Power &Internet Energy Systems(SPIES).IEEE,2022:1339-1343. [30]CONG L,SHI B,DI X,et al.Research on Satellite NetworkTraffic Prediction Algorithm Based on Gray Wolf Algorithm Optimizing GRU and Spatiotemporal Analysis[C]//2023 15th International Conference on Communication Software and Networks(ICCSN).IEEE,2023:123-131. [31]WANG S,YAN C,SHAO Y.Road Traffic Accident Prediction Model Based on J-LSTM+Attention Mechanism[C]//2023 6th International Conference on Artificial Intelligence and Big Data(ICAIBD).IEEE,2023:635-638. [32]HE Q,MOAYYEDI A,DAN G,et al.A meta-learning scheme for adaptive short-term network traffic prediction[J].IEEE Journal on Selected Areas in Communications,2020,38(10):2271-2283. [33]GUAN B,CAO J,WANG X,et al.Integrated method of deeplearning and large language model in speech recognition[C]//2024 IEEE 7th International Conference on Electronic Information and Communication Technology(ICEICT).IEEE,2024:487-490. [34]GRUVER N,FINZI M,QIU S,et al.Large language models are zero-shot time series forecasters[J].Advances in Neural Information Processing Systems,2024,36. [35]DHINGRA B,COLE J R,EISENSCHLOS J M,et al.Time-aware language models as temporal knowledge bases[J].Transactions of the Association for Computational Linguistics,2022,10:257-273. |
|