计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240500089-8.doi: 10.11896/jsjkx.240500089

• 智能医学工程 • 上一篇    下一篇

基于位置感知的多模态肺癌生存预测方法

王毅诚, 宁泰, 刘心宇, 罗烨   

  1. 同济大学计算机科学与技术学院 上海 201804
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 罗烨(yeluo@tongji.edu.cn)
  • 作者简介:(engine.wang@qq.com)
  • 基金资助:
    国家自然科学基金(62276189)

Position-aware Based Multi-modality Lung Cancer Survival Prediction Method

WANG Yicheng, NING Tai, LIU Xinyu, LUO Ye   

  1. School of Computer Science and Technology,Tongji University,Shanghai 201804,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:WANG Yicheng,born in 1999,master.His main research interests include machine learning and survival analysis.
    LUO Ye,born in 1984,associate professor,Ph.D supervisor,is a senior member of CCF(No.78398M).Her main research interests include medical image processing and analysis,computer vision,machine learning,etc.
  • Supported by:
    National Natural Science Foundation of China(62276189).

摘要: 肺癌的病理学图像在预后诊断中起着关键作用,然而,基于未标记像素级别图像进行的肺癌生存分析仍面临诸多挑战,已有的方法往往忽略了临床特征模态的信息、病理学图像块的位置信息以及病理学图像和自然图像的异质性等问题。为了克服这些挑战,提出了一种基于位置感知的多模态肺癌生存预测方法(PSMMSurv)。该方法通过多模态融合和多任务学习有效地利用了病理学图像与临床特征多模态信息。同时,提出的病理学图像特征学习网络可以通过相邻位置的信息交互实现位置感知。此外,通过自监督学习克服了数据异质性问题。在大型肺癌数据集上的实验结果表明,所提方法在C-index这一指标上优于目前已有的方法,能更准确地预测肺癌患者的生存情况,为更好的肺癌预后提供了可靠的支持。

关键词: 生存分析, 病理学影像, 多模态融合, 自监督学习, 多尺度融合, 多任务学习

Abstract: Whole slide images(WSIs) of lung cancer play a pivotal role in prognostic diagnosis.However,survival analysis for lung cancer without pixel-level annotations still encounters numerous challenges.Existing methods often overlook information from clinical feature modalities,spatial information of patches,and the heterogeneity between WSIs and natural images.To address these hurdles,a position-aware based multi-modality lung cancer survival prediction method PSMMSurv is proposed.This approach effectively leverages whole slide images and clinical features through multi-modality fusion and multi-task learning.Furthermore,the proposed whole slide image feature learning network achieves position awareness by interacting with information from adjacent locations.Moreover,data heterogeneity issues are overcome through self-supervised learning.Experimental results on a large lung cancer dataset demonstrate that the proposed method surpasses existing approaches in terms of the C-index metric,enabling more accurate prediction of lung cancer patients’ survival outcomes and providing reliable support for better lung cancer prognosis.

Key words: Survival analysis, Whole slide images, Multi-modality fusion, Self-supervised learning, Multi-scale fusion, Multi-task learning

中图分类号: 

  • TP391
[1]BADE B C,CRUZC S D.Lung cancer 2020:epidemiology,etiology,and prevention[J].Clinics in Chest Medicine,2020,41(1):1-24.
[2]HOGG J C,CHU F S F,TAN W C,et al.Survival after lungvolume reduction in chronic obstructive pulmonary disease:insights from small airway pathology[J].American Journal of Respiratory and Critical Care Medicine,2007,176(5):454-459.
[3]CHEN J M,QU A P,WANG L W,et al.New breast cancer prognostic factors identified by computer-aided image analysis of HE stained histopathology images[J].Scientific Reports,2015,5(1):1-13.
[4]COMES M C,FUCCI L,MELE F,et al.A deep learning model based on whole slide images to predict disease-free survival in cutaneous melanoma patients[J].Scientific Reports,2022,12(1):20366.
[5]ZHU X,YAO J,ZHU F,et al.Wsisa:Making survival prediction from whole slide histopathological images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7234-7242.
[6]YAO J,ZHU X,HUANG J.Deep multi-instance learning forsurvival prediction from whole slide images[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI 2019,Proceedings,Part I 22.Springer International Publishing,2019:496-504.
[7]YAO J,ZHU X,JONNAGADDALA J,et al.Whole slide images based cancer survival prediction using attention guided deep multiple instance learning networks[J].Medical Image Analysis,2020,65:101789-101803.
[8]DENG J,DONG W,SOCHER R,et al.Imagenet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2009:248-255.
[9]OTSUN.A threshold selection method from gray-level histo-grams[J].IEEE Transactions on Systems,Man,and Cybernetics,1979,9(1):62-66.
[10]CHEN T,KORNBLITH S,NOROUZI M,et al.A simple frame-work for contrastive learning of visual representations[C]//International Conference on Machine Learning.PMLR,2020:1597-1607.
[11]KAPLAN E L,MEIER P.Nonparametric estimation from in-complete observations[J].Journal of the American Statistical Association,1958,53(282):457-481.
[12]MANTEL N.Evaluation of survival data and two new rank order statistics arising in its consideration[J].Cancer Chemother Rep,1966,50(3):163-170.
[13]DE TORRES J P,BASTARRIKA G,WISNIVESKY J P,et al.Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest[J].Chest,2007,132(6):1932-1938.
[14]KRAVCHENKO J,BERRY M,ARBEEV K,et al.Cardiovascular comorbidities and survival of lung cancer patients:Medicare data based analysis[J].Lung Cancer,2015,88(1):85-93.
[15]National Lung Screening Trial Research Team.The nationallung screening trial:overview and study design[J].Radiology,2011,258(1):243-253.
[16]TIBSHIRANI R.The lasso method for variable selection in the Cox model[J].Statistics in medicine,1997,16(4):385-395.
[17]PÖLSTERL S,NAVAB N,KATOUZIAN A.Fast training ofsupport vector machines for survival analysis[C]//Machine Learning and Knowledge Discovery in Databases:European Conference,ECML PKDD 2015,2015,Proceedings,Part II 15.Springer International Publishing,2015:243-259.
[18]ISHWARAN H,KOGALUR U B,BLACKSTONE E H,et al.Random survival forests[J].Ann Appl Stat,2008,2:841-860.
[19]YAO J,ZHU X,ZHU F,et al.Deep correlational learning for survival prediction from multimodality data[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Cham:Springer International Publishing,2017:406-414.
[20]CHEN R J,LU M Y,WANG J,et al.Pathomic fusion:an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis[J].IEEE Transactions on Medical Imaging,2020,41(4):757-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!