计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240700143-6.doi: 10.11896/jsjkx.240700143
林楠, 刘志慧, 杨聪
LIN Nan, LIU Zhihui, YANG Cong
摘要: 针对命名实体识别在处理嵌套结构时语义信息逐层减弱的问题,提出了一种基于预训练模型和双向二维卷积的命名实体识别算法BAM-TDNN。该算法首先通过四词嵌入策略即BERT、距离、局部和注意力嵌入,来提取语句中的不同层次语义特征,将多个层次的语义特征转换为二维语义表示,以更好地捕捉嵌套结构之间的语义信息;其次,采用Bi-TDNN模型学习语句中实体的长距离语义依赖关系,扩展跨度表示的感受野,提取嵌套实体间更准确的语义信息,更好地理解嵌套实体之间的语义关联。通过在4个公共数据集上进行评估,实验结果表明,所提出的命名实体识别算法在多个实体识别数据集上均取得了良好的性能。BAM-TDNN在ACE2005数据集上的精确率、召回率和F1值分别为86.83%,87.93% 和 86.83%,在GENIA数据集上的精确率、召回率和F1值分别为86.52%,82.37% 和 84.36%,在CoNLL2003数据集上的精确率、召回率和F1值分别为92.24%,93.72% 和 91.97%等。
中图分类号:
[1]OZCELIK O,TORAMAN C.Named entity recognition in Turkish:A comparative study with detailed error analysis [J].Information Processing & Management,2022,59(6):103065. [2]LIU X F,TAN K W,DONG S B.Multi-granularity sequential neural network for document-level biomedical relation extraction.Information Processing & Management [J].Information Processing & Management,2021,58(6):102718. [3]XIA Y,LAN M J,LOU J Y,et al.Iterative rule-guided reasoning over sparse knowledge graphs with deep reinforcement learning [J].Information Processing & Management,2022,59(5):103040. [4]DINARELLI M,ROSSET S.Models cascade for tree-structurednamed entity detection [C]//Proceedings of 5th International Joint Conference on Natural Language Processing.2011:1269-1278. [5]JU M Z,MIWA M,ANANIADOU S.A neural layered model for nested named entity recognition [C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:1446-1459. [6]FISHER J,VLACHOS A.Merge and label:A novel neural network architecture for nested NER [C]//Proceedings of the57th Annual Meeting of the Association for Computational Linguistics.2019:5840-5850. [7]STRAKOVA J,STRAKA M,HAJIC J.Neural architectures for nested NER through linearization[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:5326-5331. [8]SOHRAB M G,MIWA M.Deep exhaustive model for nestednamed entity recognition [C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:2843-2849. [9]KATIYAR A,CARDIE C.Nested named entity recognition revisited[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:861-871. [10]YU J T,BOHNET B,POESIO M.Named entity recognition asdependency parsing [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:6470-6476. [11]LI J Y,FEI H,LIU J,et al.Unified named entity recognition as word-word relation classification [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:10965-10973. [12]WANG J,LI D,CHEN G,et al.Pyramid:A layered model for nested named entity recognition [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:5918-5928. [13]YANG S L,TU K W.Bottom-up constituency parsing and nested named entity recognition with pointer networks [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2022:2403-2416. [14]OUCHI H,SUZUKI J,KOBAYASHI S,et al.Instance-basedlearning of span representations:A case study through named entity recognition [EB/OL].(2020-04-29)[2020-07-10].arXiv:2004.14514. [15]SUN L,SUN Y X,JI F,et al.Joint learning of token context and span feature for span-based nested NER[C]//IEEE/ACM Transactions on Audio,Speech,and Language Processing.2020:2720-2730. [16]LU W,ROTH D.Joint mention extraction and classificationwith mention hypergraphs [C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:857-867. [17]MUIS A O,LU W.Labeling gaps between words:Recognizing overlapping mentions with mention separators [C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.2017:2608-2618. [18]ZHANG Y,ZHOU H Q,LI Z H.Fast and accurate neural CRF constituency parsing [C]//Proceedings of the Twenty-ninth International Conference on International Joint Conferences on Artificial Intelligence.2021:4046-4053. [19]FU Y,TAN C Q,CHEN M S,et al.Nested named entity recognition with partially-observed treecrfs [C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:12839-12847. [20]LOU C,YWANG S L,TU K W.Nested named entity recognition as latent lexicalized constituency parsing [C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.2022:6183-6198. [21]GENG R,CHEN Y,HUANG R,et al.Planarized sentence representation for nested named entity recognition[C]//Information Processing and Management.2023,60:103352. [22]LIU R B,WEI J,JIA C Y,et al.Modulating language modelswith emotions [C]//Findings of the Association for Computational Linguistics:ACL(IJCNLP 2021).2021:4332-4339. [23]WALKER C,STRASSEL S,MEDERO J,et al.ACE 2005 multilingual training corpus[J].Linguistic Data Consortium,2006,57:45. [24]KIM J,OHTA T,TATEISI Y,et al.GENIA corpus-a semantically annotated corpus for bio-textmining[J].Bioinformatics,2003,19(1):180-182. [25]SANG E,DE M.Introduction to the CoNLL-2003 shared task:Language-independent named entity recognition [C]//Proceedings of the Seventh Conference on Natural Language Learning at HLT(NAACL 2003).2003:142-147. [26]ZHANG Y,YANG J.Chinese NER using lattice LSTM [C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:1554-1564. [27]SHEN Y L,MA X Y,TAN Z Q,et al.Locate and label:A two-stage identifier for nested named entity recognition [EB/OL].(2021-01-01)[2024-03-01].arXiv:2105.06804. |
|