计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240900096-9.doi: 10.11896/jsjkx.240900096
方睿1, 崔良中1, 方圆婧2
FANG Rui1, CUI Liangzhong1, FANG Yuanjing2
摘要: 信息时代下,装备领域的数据量急剧增长,使得论证人员难以高效地从中获取关键信息,进而支持相应的数据分析和论证工作。针对装备领域事件抽取事件论元边界模糊的问题,提出了一种基于语义增强的装备事件抽取方法。该方法利用装备领域的专业术语和词汇信息,构建领域词向量,并设计能够兼容和整合不同粒度语义信息的模型结构,将装备领域词向量与预训练模型ERNIE生成的字符向量进行融合,将专业术语知识和通用语言理解能力相结合,实现更全面的语义信息捕捉,增强模型对装备领域文本语义的理解,从而提升模型对事件论元边界的识别能力。实验结果表明,该方法在装备领域数据集上取得了优于基线方法的F1值,相比CK-BERT模型F1值提升了3.83%;在公开数据集ACE2005上进行的实验验证了其能有效提升装备领域事件要素抽取的性能。
中图分类号:
[1]AFYOUNI I,KHAN A,AL AGHBARI Z. Deep-Eware:spatio-temporal social event detection using a hybrid learning model[J]. Journal of Big Data,2022,9(1). [2]CHANG C,TANG Y,LONG Y,et al. Multi-Information Preprocessing Event Extraction With BiLSTM-CRF Attention for Academic Knowledge Graph Construction[J]. IEEE Transactions on Computational Social Systems,2023,10(5): 2713-2724. [3]KNEZ T,ZITNIK S. Event-Centric Temporal Knowledge GraphConstruction:A Survey[J]. Mathematics,2023,11(23). [4]ZHANG Q C,WEI S W,LI Z H,et al. Combining NSP and NER for public opinion event extraction model[J]. Frontiers in Physics,2022,10. [5]DEVLIN J,CHANG M W,LEE K,et al. BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. ACL,2019:4171-4186. [6]YANG Z,DAI Z,YANG Y,et al. Xlnet:Generalized autoregressive pretraining for language understanding[J]. Advances in Neural Information Processing Systems,2019,32. [7]SUN Y,WANG S,LI Y,et al. Ernie 2.0:A continual pre-trai-ning framework for language understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence. AAAI,2020:8968-8975. [8]WANG G D. Research on event analysistechnology for military texts[D]. Harbin:Harbin Institute of Technology,2022. [9]HU X B,YU X Q,LI S M,et al. Chinese Named Entity Recognition Based on Knowledge Enhancement[J]. Computer Engineering,2021,47(11):84-92. [10]ZHAO Z Y,ZHU J J,ZHANG Y X,et al. Chinese named entity recognition based on enhancing lexicon knowledge integration utilizing character context information[J]. Journal of Sichuan University(Natural Science Edition),2024,61(4):110-118. [11]ZHUANG L,FEI H,HU P. Knowledge-enhanced event relation extraction via event ontology prompt[J]. Information Fusion,2023,100: 101919. [12]LI Q,LI J,SHENG J,et al. A Survey on Deep Learning Event Extraction:Approaches and Applications[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,35(5):6301-6321. [13]YU X,WANG X,LUO X,et al. Multi-scale event causality extraction via simultaneous knowledge-attention and convolutional neural network[J]. Expert Systems,2022,39(5). [14]WANG L,CAO H,YUAN L,et al. Child-Sum EATree-LSTMs:enhanced attentive Child-Sum Tree-LSTMs for biomedical event extraction[J]. Bmc Bioinformatics,2023,24(1). [15]SUN H,ZHOU J,KONG L,et al. Seq2EG:a novel and effective event graph parsing approach for event extraction[J]. Know-ledge and Information Systems,2023,65(10): 4273-4294. [16]GUO X Y,MA B,AIBIBULA A,et al. Dynamic Heterogeneous Graph Enhanced Cascade Decoding Event Extraction Model[J]. Computer Engineering,2024:1-11. [17]LIU L P,ZHOU X,CHEN J J,et al. Event Extraction Method Based on Conversational Machine Reading Comprehension Model[J]. Computer Science,2023,50(2):275-284. [18]DING L,CHEN X,WEI J,et al. Mabert:mask-attention-based Bert for Chinese event extraction[J]. ACM Transactions on Asian and Low-Resource Language Information Processing,2023,22(7): 1-21. [19]PEI B S,LI X,JIANG Z T,et al. Research on Public Security Professional Small Sample Knowledge Extraction Method Based on Large Language Model[J]. Journal of Frontiers of Computer Science and Technology,2024,18(10):2630-2642. [20]LI Y,GENG C Y,YANG D. Fin-BERT-Based Event Extraction Method for Chinese Financial Domain[J]. Computer Engineering and Applications,2024,60(14):123-132. [21]WU C,ZHANG X,ZHANG Y,et al. PMC-LLaMA:Further Finetuning LLaMA on Medical Papers[J]. arXiv:2304.14454,2023. [22]LI H P,MA B,YANG Y T,et al. Document-level Event Extraction Method Based on Slot Semantic Enhanced Prompt Learning[J]. Computer Engineering,2023,49(9):23-31. [23]YU C M,DENG B,TAN L Y,et al. Syntax-Enhanced EventExtraction Model Based on XLNET and GAT[J]. Data Analysis and Knowledge Discovery,2024,8(4):26-38. [24]ZHANG Z,HAN X,LIU Z,et al. ERNIE:Enhanced Language Representation with Informative Entities[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. ACL,2019:1441-1451. [25]LIU W,ZHOU P,ZHAO Z,et al. K-bert:Enabling languagerepresentation with knowledge graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence. AAAI,2020:2901-2908. [26]SUN T,SHAO Y,QIU X,et al. CoLAKE:Contextualized Language and Knowledge Embedding[C]//Proceedings of the 28th International Conference on Computational Linguistics. ACL,2020:3660-3670. [27]WANG X,GAO T,ZHU Z,et al. KEPLER:A unified model for knowledge embedding and pre-trained language representation[J]. Transactions of the Association for Computational Linguistics,2021,9:176-194. [28]YU D,ZHU C,YANG Y,et al. Jaket:Joint pre-training ofknowledge graph and language understanding[C]//Proceedings of the AAAI Conference on Artificial Intelligence. AAAI,2022:11630-11638. [29]TIAN S,LUO Y,XU T,et al. KG-Adapter:Enabling Know-ledge Graph Integration in Large Language Models through Parameter-Efficient Fine-Tuning[C]//Findings of the Association for Computational Linguistics ACL 2024. ACL,2024:3813-3828. [30]CHURCH K W. Word2Vec[J]. Natural Language Engineer-ing,2017,23(1): 155-162. [31]MA R,PENG M,ZHANG Q,et al. Simplify the Usage of Lexicon in Chinese NER[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. ACL,2020:5951-5960. [32]CUNHA L F,SILVANO P,CAMPOS R,et al. ACE-2005-PT:Corpus for Event Extraction in Portuguese[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval,SIGIR 2024. Association for Computing Machinery,2024. |
|