计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240900124-7.doi: 10.11896/jsjkx.240900124
蒋蔚1, 郭成波1, 寇家华1, 张若宛1, 郭艳玲2
JIANG Wei1, GUO Chengbo1, KOU Jiahua1, ZHANG Ruowan1, GUO Yanling2
摘要: 为解决现有射频识别技术在物流仓储型高精度定位需求领域应用率低且定位精度差的问题,提出了一种基于改进随机森林模型的射频识别技术定位方法。首先,搭建了多天线同时读取参考标签接收信号强度的环境,并在读取过程中采用迭代平均值过滤算法采集接收信号强度数值,采用滑动窗口从已有的接收信号强度数值中推导出新的属性,扩大机器学习的数据集。其次,引入随机森林分类模型,构建以接收信号强度及其新属性为输入,以X轴和Y轴坐标为输出的随机森林模型基础,并通过参数分析确定相关参数值,改进随机森林模型在室内定位方面的使用效果。最后,采用随机森林分类模型预测目标标签的所属区域,再利用相应区域随机森林回归模型预测目标标签的精确坐标,实现了基于射频识别技术接收信号强度的室内精确定位。在室内环境下,通过所搭建的射频识别技术室内定位方法可测得的平均定位误差为4.89 cm,与其他算法相比平均定位精度提高80%以上,能够满足物流高密度仓储场景下的物品定位需求。
中图分类号:
[1]NIKOLA G,SCHULZ K,IVANOCHKO I. Use of RFID Technology in Retail Supply Chain[J]. Developments in Information &Knowledge Management for Business Applications,2021,1:555-587. [2]GOSWAMI S. Indoor location technologies[M]. Springer Science & Business Media,2012. [3]LI N,BECERIK-GERBER B. Performance-based evaluation of RFID-based indoor location sensing solutions for the built environment[J]. Advanced Engineering Informatics,2011,25(3):535-546. [4]GOMES E L,FONSECA M,LAZZARETTI A E,et al. Clustering and hierarchical classification for high-precision RFID indoor location systems[J]. IEEE Sensors Journal,2021,22(6):5141-5149. [5]HE Y,GUO Z X,GUI L Q,et al. RFID Multi-tag Relative Location Method Based on RSSI Sequence Features[J]. Computer Science,2023,50(11):296-305. [6]LAN Q Q,XIAO B X,Grid-based density peak clustering algorithm for RFID positioning [J]. Journal of Electronic Measurement and Instru-mentation,2018,32(10):73-78. [7]MIAO Z H,CHEN A G,ZHU L J,et al. Im-proved LANDMARC Downhole Positioning Algorithm Based on Adaptive CKF[J]. Metal Mine,2024(1):158-164. [8]JIAO X L,GUO A B,ZHANG J Y,et al. Novel optimization algorithm for cable RFID positioning technology[J]. China SafetyScience Journal,2023,33(S2):182-187. [9]CAVUR M,DEMIR E. RSSI-based hybrid algorithm for real-time tracking in underground mining by using RFID technology[J]. Physical Communication,2022,55:101863. [10]XUE H,LI L,WEN P,et al. A machine learning-based positioning method for poultry in cage environments[J]. Computers and Electronics in Agriculture,2023,208:107764. [11]WANG Z,LIANG X,CHU Y,et al. 3D Localization of RFID Tags Using SA Single-Antenna Based on Time Series Regression Model[J]. IEEE Internet of Things Journal,2024,11(23):38755-38766. [12]AFUOSI M B,ZOGHI M R. Indoor positioning based on improved weighted KNN for energy management in smart buil-dings[J]. Energy and Buildings,2020,212:109754. [13]KHAN S I,RAY B R,KARMAKAR N C. Rfid localization in construction with iot and security integration[J]. Automation in Construction,2024,159:105249. [14]LI L,ZHENG J L,LUO W C,et al. RFID Indoor Positioning Algorithm Based on Proximal Policy Opyimization[J]. Computer Science,2021,48(04):274-281. [15]XU W,TU J,XU N,et al. Predicting daily heating energy consumption in residential build-ings through integration of random forest model and meta-heuristic algorithms[J]. Energy,2024,301:131726. [16]WU Z,WANG Y,FU J. A hybrid RSSI and AoA indoor positioning approach with adapted confidence evaluator[J]. Ad Hoc Networks,2024,154:103375. [17]XIE L B,LI Y Y,WANG Y,et al. Indoor RFID localization algorithm based on adaptive bat algorithm[J]. Journal Communications,2022,43(8):90-99. [18]ZHANG X,SHEN H,HUANG T,et al. Improved random fo-rest algorithms for increasing the accuracy of forest above ground biomass estimation using Sentinel-2 imagery[J]. Ecological Indicators,2024,159:111752. [19]XU H,WU M X,LI P. RFID Indoor Relative Position Positioning Algorithm Based on ARIMA Model[J]. Computer Scien-ce,2020,47(9):252-257. [20]LIU G B,ZHU Z,FANG T,et al. Design of Mine Air Quality Evaluation System Based on Improved Random Forests[J]. Mental Mine,2024(11):210-218. |
|