计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600153-8.doi: 10.11896/jsjkx.240600153

• 信息安全 • 上一篇    下一篇

基于边缘计算的区块链网络节点信任评估方法

赵婵婵, 尉晓敏, 石宝, 吕飞, 刘利彬, 张子阳   

  1. 内蒙古工业大学信息工程学院 呼和浩特 010080
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 石宝(kshibao@163.com)
  • 作者简介:(cczhao@imut.edu.cn)
  • 基金资助:
    内蒙古自治区自然科学基金项目(2023LHMS06016);内蒙古自治区直属高校基本科研业务费项目(JY20240010,JY20230082)

Edge Computing Based Approach for Node Trust Evaluation in Blockchain Networks

ZHAO Chanchan, WEI Xiaomin, SHI Bao, LYU Fei, LIU Libin, ZHANG Ziyang   

  1. School of Information Engineering,Inner Mongolia University of Technology,Hohhot 010080,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:ZHAO Chanchan,born in 1982,Ph.D,associate professor.Her main research interests include mobile edge computing and blockchain.
    SHI Bao,born in 1982,Ph.D,associate professor.His main research interest is image processing.
  • Supported by:
    Natural Science Foundation of Inner Mongolia Autonomous Region(2023LHMS06016) and Basic Scientific Research Business Fee Project of Universities Directly under the Inner Mongolia Autonomous Region(JY20240010,JY20230082).

摘要: 针对现阶段在边缘计算中出现的恶意设备或者提供恶意数据的问题,提出了一种基于边缘计算的区块链网络节点信任评估方法。首先,采用区块链技术以及搭建云边端框架的方法,建立边缘设备之间的信任关系;其次,在整体的信任评估方法中添加了基于信任的共识机制,并且引入时间敏感函数,根据不同场景对信任值要求的时效性来确定;最后,在计算信任值时,为了避免主观因素造成的偏差,提出了增加稳定系数的方法,来保障信任值的可靠性。经过仿真实验验证,所提出的信任评估方法在不同恶意节点比例下,节点的交互成功率要优于其他传统的信任评估方法,当恶意节点在20%时,所提方法与其他方法相差不大,而当恶意节点的比例达到40%时,交互成功率为0.82,当恶意节点所占比例高达60%时,所提方法交互成功率也达到了0.68%;随着时间的进行,正常节点和恶意节点的信任值变化呈相反趋势,正常节点的信任值在最终达到0.9,而恶意节点的信任值降低至0.2;为了更好地观察信任值节点的信任值变化情况,设置了恶意节点执行恶意行为的概率为50%,结果同样也表明所提信任评估方法在面对恶意节点时可以有效地做出反馈;最后,比较了在不同节点情况下的时间消耗,结果表明所提方法在处理节点数量越大时,时间消耗越低于传统的信任评估方法。因此,所提方法在面对大量的恶意节点时,可以做出有效的信任评估,这一方法旨在确立如何选择可信节点作为数据存储传输的目标节点,并计算边缘节点的信任值,减少恶意节点带来的影响。

关键词: 边缘计算, 区块链, 信任评估, 身份验证

Abstract: To solve the problem of malicious devices or malicious data in edge computing,this paper proposes a method of node trust evaluation based on edge computing.Firstly,the blockchain technology and the method of building a cloud-edge framework are used to establish the trust relationship between edge devices.Secondly,a trust-based consensus mechanism is added to the overall trust evaluation method,and a time-sensitive function is introduced to determine the timeliness of trust value requirements in different scenarios.Finally,in order to avoid deviations caused by subjective factors in calculating the trust value,a method of adding stability coefficients is proposed to ensure the reliability of the trust value.Simulation experiments validate that the proposed trust evaluation method has a higher success rate of node interaction than other traditional trust evaluation methods at different malicious node ratios.When the malicious node ratio is 20%,the proposed method is similar to other methods,while when the malicious node ratio is 40%,the success rate is 0.82,and when the malicious node ratio is 60%,the success rate is 0.68%.As the normal nodes and malicious nodes’ trust values change over time,they follow opposite trends.The trust value of normal nodes reaches 0.9 in the end,while the trust value of malicious nodes decreases to 0.2.To better observe the change of trust va-lues of nodes,this paper sets the probability of malicious nodes performing malicious behaviors at 50%.The results also show that the proposed trust evaluation method can effectively respond to malicious nodes.Finally,the time consumption is compared in different node conditions,and the results show that the proposed method has lesser time consumption than traditional trust evaluation methods when dealing with a larger number of nodes.Therefore,the proposed method can make effective trust evaluations when facing a large number of malicious nodes.This method aims to determine how to select trusted nodes as target nodes for data storage and transmission,calculate the trust value of edge nodes,and reduce the impact of malicious nodes.

Key words: Edge computing, Blockchain, Trust evaluation, Identity authentication

中图分类号: 

  • TP393
[1]SHI W S,CAO J,ZHANG Q,et al.Edge Computing:Vision and Challenges [J].IEEE Internet of Things Journal,2016,3(5):637-646.
[2]TANG X Y,CAO C,WANG Y X,et al.Computing power network:The architecture of convergence of computing and networking towards 6G requirement [J].China Communications,2021,18(2):175-185.
[3]YANG W,SHI L,LIANG H,et al.Blockchian Empowered Reliable Computation Offloading and Resource Allocation for Mobile Edge Computing Networks [C]//2023 IEEE/CIC International Conference on Communications in China(ICCC).IEEE,2023.
[4]ALWARAFY A,AL-THELAYA K A,ABDALLAHM,et al.A Survey on Security and Privacy Issues inEdge-Computing-Assisted Internet of Things [J].IEEE Internet of Things Journal,2021,8(6):4004-4022.
[5]NIKRAVAN M,HAGHI K.A review on trust management in fog/edge computing:Techniques,trends,and challenges [J].Journal of Network and Computer Applications,2022,204:103402.
[6]ZHENG W Y,CHEN B,HE D B.An adaptive access control scheme based on trust degrees for edge computing[J].Computer Standards&Interfaces,2022,82:103640.
[7]ZHANG L J,ZOU Y F,WANG W Z,et al.Resource allocation and trust computing for blockchain-enabled edge computing system[J].Computers & Security,2021,105:102249.
[8]KONG W P,LI X Y,HOU L Y,et al.A Reliable and Efficient Task Offloading Strategy Based on Multifeedback Trust Mechanism for IoT Edge Computing[J].IEEE Internet of Things Journal,2022,9:13927-13941.
[9]WEN M,WANG T,ZHANG S B,et al.An active and verifiable trust evaluation approach for edge computing[J].Journal of Cloud Computing,2020,9(1):1-19.
[10]CHEN J Z,WANG X B,SHEN X M.RTE:Rapid and ReliableTrust Evaluation for Collaborator Selection and Time-Sensitive Task Handling in Internet of Vehicles [J].IEEE Internet of Things Journal,2024,11(7):12278-12291.
[11]JAYAKUMAR D,SANTHOSH KUMAR K.Design of mutual trust between the IoT nodes using adaptive network-based fuzzy inference system in edge computing systems [J].Materials Today:Proceedings,2022,56:1795-1801.
[12]LI T,HUANG G S,ZHANG S B,et al.NTSC:a novel trust-based service computing scheme in social internet of things [J].Peer-to-Peer Networking and Applications,2021,14(6):3431-3451.
[13]JIANG F L,ZENG X W.Trust model for wireless network security based on the edge computing[J].Microsystem Technologies,2019,27:1627-1632.
[14]WANG K,CHEN J M,LIANG Z D,et al.A trusted consensus fusion scheme for decentralized collaborated learning in massive IoT domain [J].Information Fusion,2021,72:100-109.
[15]WU X,LIANG J B.A blockchain-based trust managementmethod for Internet of Things [J].Pervasive and Mobile Computing,2021,72:101330.
[16]ABEYSEKARA P,HAI D,QINA K.Data-driven Trust Prediction in Mobile Edge Computing-based IoT Systems [J].IEEE Transactions on Services Computing,2021:1-1.
[17]DEEBAK B D,MEMON F H,KHOWAJA S A,et al.A Lightweight Blockchain-Based Remote Mutual Authentication for AI-Empowered IoT Sustainable Computing Systems [J].IEEE Internet of Things Journal,2023,10(8):6652-6660.
[18]PAN X,YUAN L Y,HUANG M M.Cross-domain trust evaluation model for IoT based on blockchain and domain trust degree[J].Computer Engineering,2023,49(5):181-190.
[19]HE F,XIAO Z L,WANGX B,et al.Lightweight Flexible Group Authentication Utilizing Historical Collaboration Process Information [J].IEEE Transactions on Communications,2023,71(4):2260-2273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!