计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 146-153.doi: 10.11896/jsjkx.240700127

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于Inverted-B+树的海量三维地质块体模型高效索引方法

陈根深1,2,3,4,5, 刘刚1,2,3,4,5, 董洋3,4, 范文遥1,2,4,5, 易强1,2, 姜子鑫3,4   

  1. 1 中国地质大学(武汉)计算机学院 武汉 430074
    2 智能地学信息处理湖北省重点实验室 武汉 430074
    3 武汉地大坤迪科技有限公司 武汉 430074
    4 贵州省战略矿产智慧勘查重点实验室 贵阳 550081
    5 自然资源部城市国土资源监测与仿真重点实验室 广东 深圳 518000
  • 收稿日期:2024-07-22 修回日期:2024-09-06 出版日期:2025-08-15 发布日期:2025-08-08
  • 通讯作者: 刘刚(liugang@cug.edu.cn)
  • 作者简介:(gschen@cug.edu.cn)
  • 基金资助:
    国家自然科学基金(42372345);自然资源部城市国土资源监测与仿真重点实验室开放基金(KF-2023-08-25);贵州磷、锰、铝优势资源成矿规律与快速高效智慧化勘查技术研究及示范项目(黔科合战略找矿[2022]ZD003,[2022]ZD004)

Efficient Indexing Method for Massive 3D Geological Block Models Based on Inverted-B+ Tree

CHEN Genshen1,2,3,4,5, LIU Gang1,2,3,4,5, DONG Yang3,4, FAN Wenyao1,2,4,5, YI Qiang1,2, JIANG Zixin3,4   

  1. 1 School of Computer Science,China University of Geosciences,Wuhan 430074,China
    2 Hubei Key Laboratory of Intelligent Geo-Information Processing,Wuhan 430074,China
    3 Wuhan Dida Quanty Science and Technology Co.,Ltd.,Wuhan 430074,China
    4 Guizhou Key Laboratory for Strategic Mineral Intelligent Exploration,Guiyang 550081,China
    5 Key Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,Shenzhen,Guangdong 518000,China
  • Received:2024-07-22 Revised:2024-09-06 Online:2025-08-15 Published:2025-08-08
  • About author:CHEN Genshen,born in 1993,Ph.D,is a member of CCF(No.J5928G).His main research interests include geoscience big data,GIS,and geo-information visua-lization.
    LIU Gang,born in 1967,Ph.D,professor,Ph.D supervisor,is a member of CCF(No.24497S).His main research interests include geoscience big data,intelligent geoinformation processing,and visualization and visual analysis.
  • Supported by:
    National Natural Science Foundation of China(42372345),Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources(KF-2023-08-25) and Guizhou Strategic Prospecting Program([2022] ZD003 and [2022]ZD004).

摘要: 三维地质块体模型中大量的零值或空值使得基于B+树的属性索引结构频繁分裂和调整,导致索引维护成本高;同时,B+树的单向链表结构加剧了大规模块体模型中数据顺序遍历和范围查询效率低下的问题。为此,提出了一种基于Inverted-B+树(IBT)的索引方法。该方法通过构建IBT索引结构,在将重复键插入叶子节点时,为每个重复键创建倒排节点,从而有效减少了数据处理中的结构调整。通过在内部节点存储中间索引值来加速查询过程,并在叶子节点和倒排节点之间建立双向链表,实现了从任意叶子节点按顺序访问整个数据集从而进行高效的范围查询。利用三维地质结构模型经过体元剖分、插值和降维处理所得到的6个块体模型进行测试,结果表明:与传统B+树相比,IBT方法在索引构建时间、空间占用和查询性能方面均有显著提升,特别是在处理大规模数据集中,其索引构建效率提升了71%,空间占用减少了83%,查询效率得到了显著提升。

关键词: Inverted-B+树, 规则块体, 三维地质模型, 空间数据管理, 空间索引

Abstract: The prevalence of zero or null values in three-dimensional geological block models raises maintenance costs and efficiency issues due to frequent splitting and adjustment of the B+tree-based attribute index structure.An indexing method based on Inverted-B+Tree(IBT) is proposed.This method minimizes structural adjustments during data processing by constructing an IBT index structure,creating inverted nodes for duplicate keys inserted into leaf nodes.It accelerates queries by storing interme-diate index values in internal nodes and establishing bidirectional links between leaves and inverted nodes,enabling efficient range queries via sequential access to the dataset from any leaves nodes.Six geological block models after voxelization,interpolation,and dimension reduction of geological structural models are mainly used in the experiment.Comparing the traditional B+tree,results show that IBT has great performance in terms of index construction,spatial usage,and querying efficiencies.Especially for ma-naging large amounts of data,index construction,and information query efficiency are improved by 71%,with 83% spatial usagebeing reduced,which is relatively stable and scalable for information queries of 3D geological blocks.

Key words: Inverted-B+tree, Regular blocks, 3D geological models, Spatial data management, Spatial index

中图分类号: 

  • TP391
[1]WU C L,LIU G,ZHOU Q,et al.Fundamental problems of integrated application of big data in geoscience[J].Bulletin of Geological Science and Technology,2020,39(4):1-11.
[2]LIU G,WU C L,HE Z W,et al.Data model for geological spatio-temporal big data expression and storage management[J].Bulletin of Geological Science and Technology,2020,39(1),164-174.
[3]ZHOU Q,WU C L,HU X Y,et al.A new metallogenic model for the giant manganese deposits in northeastern Guizhou,China[J].Ore Geology Reviews,2022,149:105070.
[4]CHEN G S,GUO X L,LIU G,et al.3D geological modeling in the typical area of karst basin on the south bank of the Yangtze river in Yichang city [J].Safety and Environmental Enginee-ring,2019,26(2):1-8.
[5]LIU G,CHEN G S,CHEN Q Y,et al.Key technologies for efficient visualization of large scale 3D spatial models based on web[J].Geospatial Information,2023,21(12):8-13.
[6]LIU L,SUN Y,JI M,et al.Efficient Construction of VoxelModels for Ore Bodies Using an Improved Winding Number Algorithm and CUDA Parallel Computing[J].ISPRS Internatio-nal Journal of Geo-Information,2023,12(12):473.
[7]LI J,LIU P R,LIANG Z X,et al.Three-dimensional geological modeling method of regular voxel splitting based on multi-source data fusion[J].Rock and Soil Mechanics,2021,42(4):1170-1177.
[8]SMIRNOVA A D,CHEN S J,MIKHAYLOVA T V.Geological Mathematical Block Modelling in Kuzbass Mining Industry[C]//2022 IEEE International Multi-Conference on Enginee-ring,Computer and Information Sciences(SIBIRCON).IEEE,2022:1970-1973.
[9]CUI Z S,CHEN Q Y,LIU G.A two-stage downscaling hydrological modeling approach via convolutional conditional neural process and geostatistical bias correction[J].Journal of Hydro-logy,2023,620:129498.
[10]WANG Z Y,ZUO R G,YANG F F.Geological mapping using direct sampling and a convolutional neural network based on geochemical survey data[J].Mathematical Geosciences,2023,55(7):1035-1058.
[11]JIN X,WANG G W,TANG P,et al.3D geological modeling and uncertainty analysis for 3D targeting in Shanggong gold deposit(China)[J].Journal of Geochemical Exploration,2020,210:106442.
[12]WELLMANN F,CAUMON G.3-D Structural geological mo-dels:Concepts,methods,and uncertainties[M]//Advances in geophysics.Elsevier,2018:1-121.
[13]LIU Y Y,ZHANG X W,GUO W,et al.Research Status of and Trends in 3D Geological Property Modeling Methods:A Review[J].Applied Sciences,2022,12(11):5648.
[14]HOULDING S.3D geoscience modeling:computer techniquesfor geological characterization[M].Springer Science & Business Media,2012.
[15]LI M X,WANG H C,DAI H P,et al.A Survey of Multi-Dimensional Indexes:Past and Future Trends[J].IEEE Transactions on Knowledge and Data Engineering,2024,36(8):3635-3655.
[16]MAMOULIS N.Spatial data management[M].Beijing:Springer Nature,2022.
[17]PAN J J,WANG J,LI G.Survey of vector database management systems[J].The VLDB Journal,2024,33(5):1591-1615.
[18]CHEN G S,LIU G,CHEN Q,et al.Key technologies and application of 3D spatial data management system for mining based on multi-source data integration and WebGIS[J].Software Guide,2023,22(11):18-28.
[19]CAO K Y,LIU Y F,DONG Y K,et al.Hilbert R-tree Space Indexing Based on RHCA Clustering[C]//International Confe-rence on Smart Technologies and Systems for Internet of Things.Singapore:Springer Nature Singapore,2021:205-211.
[20]CHENG H,XIE K,WEN C,et al.Fast visualization of 3D massive data based on improved Hilbert R-tree and stacked LSTM models[J].IEEE Access,2021,9:16266-16278.
[21]ZHANG Y N,ZHANG A M,GAO M,et al.Research on Three-Dimensional Electronic Navigation Chart Hybrid Spatial Index Structure Based on Quadtree and R-Tree[J].ISPRS Internatio-nal Journal of Geo-Information,2022,11(5):319.
[22]LIU Z B,CHEN L,YANG A R,et al.Hiindex:An efficient spatial index for rapid visualization of large-scale geographic vector data[J].ISPRS International Journal of Geo-Information,2021,10(10):647.
[23]WANG Y Z,LYU H,MA Y Q.Geological tetrahedral model-oriented hybrid spatial indexing structure based on Octree and 3D R*-tree[J].Arabian Journal of Geosciences,2020,13(15):728.
[24]CHAUDHRY N,YOUSAF M M.A hash-based index for processing frequent updates and continuous location-based range queries[J].Knowledge and Information Systems,2023,65(10):4233-4271.
[25]SAFACE S,MIRABI M,RAHMANI A M,et al.A distributed B+Tree indexing method for processing range queries over streaming data[J].Cluster Computing,2023,27:1251-1274.
[26]DE MOL R,BARRANCO C D,DE TRÉ G.Indexing possibilistic numerical data using interval B+-trees[J].Fuzzy Sets and Systems,2021,413:138-154.
[27]JIANG H,KANG J F,DU Z H,et al.Vector spatial big data storage and optimized query based on the multi-level Hilbert grid index in HBase[J].Information,2018,9(5):116.
[28]LIU H,YAN J N,WANG J L,et al.HGST:A Hilbert-GeoSOT Spatio-Temporal Meshing and Coding Method for Efficient Spatio-Temporal Range Query on Massive Trajectory Data[J].ISPRS International Journal of Geo-Information,2023,12(3):113.
[29]LEI Y,TONG X C,WANG D L,et al.W-Hilbert:A W-shaped Hilbert curve and coding method for multiscale geospatial data index[J].International Journal of Applied Earth Observation and Geoinformation,2023,118:103298.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!