计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 308-316.doi: 10.11896/jsjkx.240900170

• 人工智能 • 上一篇    下一篇

基于多轮LLM和犯罪知识图谱的多被告人法律判决预测

王东升   

  1. 中国政法大学法治信息管理学院 北京 102249
  • 收稿日期:2024-09-29 修回日期:2025-01-22 出版日期:2025-08-15 发布日期:2025-08-08
  • 通讯作者: 王东升(wangdsh@cupl.edu.cn)
  • 基金资助:
    中国政法大学科研创新项目(24KYGH013);中央高校基本科研业务费专项资金

Multi-defendant Legal Judgment Prediction with Multi-turn LLM and Criminal Knowledge Graph

WANG Dongsheng   

  1. School of Information Management for Law,China University of Political Science and Law,Beijing 102249,China
  • Received:2024-09-29 Revised:2025-01-22 Online:2025-08-15 Published:2025-08-08
  • About author:WANG Dongsheng,born in 1992,Ph.D,lecturer.His main research interests include natural language processing and knowledge graph.
  • Supported by:
    China University of Political Science and Law Research Innovation Project(24KYGH013) and Fundamental Research Funds for the Central Universities.

摘要: 一些研究利用先进的大模型(LLM)技术理解法律事实,预测被告人的罪名、刑期等判决结果。为进一步深入研究,选择了更为复杂的多被告人法律判决预测任务,它比单被告人预测更困难。具体地,将与LLM的交互由单轮升级为多轮,以此提高LLM对案件的理解能力。此外,构建了描述案件的两类犯罪知识图谱,其中犯罪关系知识图谱刻画了被告人之间的帮助关系,量刑情节知识图谱展示了案件的核心犯罪情节。通过犯罪知识图谱,设计了一个检索系统为LLM提供类案判决的参考。在多被告法律判决预测实验中,所提方法的预测结果优于对比方法,这表明多轮LLM交互和犯罪知识图谱的设计是有效的。

关键词: 多被告人, 法律判决预测, 大语言模型, 犯罪知识图谱

Abstract: Some studies use advanced Large Language Model(LLM) technologies to understand legal facts and predict the defendant's charges,prison term and other judgment results.For further in-depth research,this paper chooses the more complex task of predicting legal judgments for multiple defendants,which is more challenging than predicting for a single defendant.Specifically,upgrading the interaction with LLM from a single-turn to multi-turn process to enhance LLM's understanding of criminal cases.In addition, two types of crime Knowledge Graphs(KGs) are construted to describe the case.The criminal relationship knowledge graph depicts the relationships of assistance between the defendants,while the sentencing circumstance knowledge graph represents the core criminal details of the case.Through crime knowledge graphs,a retrieval system is designed to provide LLM with references for similar case judgments.In experiments on predicting legal judgments for multiple defendants, the prediction results of the proposed method are better than the comparison methods,which shows that the designs of multi-turn LLM interactions and crime knowledge graphs are effective.

Key words: Multi-defendant, Legal judgment prediction, Large language model, Criminal knowledge graph

中图分类号: 

  • TP391.1
[1]TONG S X,YUAN J L,ZHANG P L,et al.Legal Judgment Prediction via graph boosting with constraints[J].Information Processing and Management,2024,61(2):103663.
[2]ZHANG C Y,QU H,CUI C R,et al.Process Supervision Based Sequence Multi-task Method for Legal Judgement Prediction[J].Computer Science,2021,48(3):227-232.
[3]GAN L L,LI B K,KUANG K,et al.Exploiting Contrastive Learning and Numerical Evidence for Confusing Legal Judgment Prediction[C]//Conference on Empirical Methods in Natural Language Processing.2023:12174-12185.
[4]FENG G Y,QIN Y B,HUANG R Z,et al.Criminal Action Graph:A semantic representation model of judgement documents for legal charge prediction[J].Information Processing and Management,2024,60(5):103421.
[5]SUKANYA G,JAYARAJU P.Modified Hierarchical-Attention Network model for legal judgment predictions[J].Data & Knowledge Engineering,2023,147:102203.
[6]ZHAO Q H,GAO T H,GUO N.LA-MGFM:A legal judgment prediction method via sememe-enhanced graph neural networks and multi-graph fusion mechanism[J].Information Processing and Management,2023,60(5):103455.
[7]XIAO C J,HU X Y,LIU Z Y,et al.Lawformer:A pre-trained language model for Chinese legal long documents[J].AI Open,2021,2:79-84.
[8]ZHOU Z,SHI J X,SONG P X,et al.LawGPT:A Chinese Legal Knowledge-Enhanced Large Language Model[J].arXiv:2406.04614,2024.
[9]PAN S P,LU T,GU N,et al.Charge Prediction for Multi-defendant Cases with Multi-scale Attention[C]//Computer Supported Cooperative Work and Social Computing.2019:766-777.
[10]LYU Y G,HAO J T,WANG Z H,et al.Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning[C]//Findings of the Association for Computational Linguistics.2023:2198-2209.
[11]QIN W C,CAO Z L,YU W J,et al.Explicitly Integrating Judgment Prediction with Legal Document Retrieval:A Law-Guided Generative Approach[C]//The 47th International ACM SIGIR Conference on Research and Development in Information Retrieval.2024:2210-2220.
[12]KORT F.Predicting Supreme Court Decisions Mathematically:A Quantitative Analysis of the “Right to Counsel” Cases[J].The American Political Science Review,1957,51(1):1-12.
[13]FENG Y,LI C Y,NG V.Legal Judgment Prediction via Event Extraction with Constraints[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.2022:648-664.
[14]LIU Y F,WU Y Q,ZHANG Y T,et al.ML-LJP:Multi-LawAware Legal Judgment Prediction[C]//The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval.2023:1023-1034.
[15]CHALKIDIS I,FERGADIOTIS M,MALAKASIOTIS P,et al.LEGAL-BERT:The Muppets straight out of Law School[J].arXiv:2010.02559,2020.
[16]BELTAGY L,PETERS M,COHAN A.Longformer:The Long-Document Transformer[J].arXiv:2004.05150,2020.
[17]OUYANG L,WU J,JIANG X,et al.Training language models to follow instructions with human feedback[C]//Annual Conference on Neural Information Processing Systems 2022.2022:27730-27744.
[18]SUN Q,HUANG K,YANG X C,et al.Consistency GuidedKnowledge Retrieval and Denoising in LLMs for Zero-shot Do-cument-level Relation Triplet Extraction[C]//The ACM on Web Conference.2024:4407-4416.
[19]JI B J,DUAN X Y,QIU Z Y,et al.Submodular-based In-context Example Selection for LLMs-based Machine Translation[C]//The 2024 Joint International Conference on ComputationalLinguistics,Language Resources and Evaluation.2024:15398-15409.
[20]AGRAWAL G,PAL K,DENG Y L,et al.CyberQ:Generating Questions and Answers for Cybersecurity Education Using Knowledge Graph-Augmented LLMs[C]//Thirty-Eighth AAAI Conference on Artificial Intelligence.2024:23164-23172.
[21]HUANG Q Z,TAO M X,AN Z W,et al.Lawyer LLaMA Tech-nical Report[J].arXiv:2305.15062,2023.
[22]WU Y Q,ZHOU S Y,LIU Y F,et al.Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model Collaboration[C]//The 2023 Conference on Empirical Methods in Natural Language Processing.2023:12060-12075.
[23]SHUI R H,CAO Y X,WANG X,et al.A Comprehensive Evaluation of Large Language Models on Legal Judgment Prediction[C]//Findings of the Association for Computational Linguistics:EMNLP 2023.2023:7337-7348.
[24]DENG C L,MAO K L,ZHANG Y Y,et al.Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction[J].arXiv:2407.01964,2024.
[25]WEI J,WANG X Z,SCHUURMANS D,et al.Chain-of-Thought Prompting Elicits Reasoning in Large Language Models[C]//Annual Conference on Neural Information Processing Systems.2022:24824-24837.
[26]ZHANG Z P,WANG A Q,ZHANG Y,et al.Relation pruning and discriminative sampling over knowledge graph for long-tail recommendation[J].Information Sciences,2024,679:120871.
[27]LIU H Z,ZHU Y,WU Z H.Knowledge Graph-Based Behavior Denoising and Preference Learning for Sequential Recommendation[J].IEEE Transactions on Knowledge and Data Enginee-ring,2024,36(6):2490-2503.
[28]HU Y L,ZOU F T,HAN J J,et al.LLM-TIKG:Threat intelligence knowledge graph construction utilizing large language model[J].Computers & Security,2024,145:103999.
[29]FAN Z L,CHEN C C.CuPe-KG:Cultural perspective-basedknowledge graph construction of tourism resources via pretrained language models[J].Information Processing and Ma-nagement,2024,61(2):103646.
[30]ZHANG Y X,ZHAI S L,MENG Y,et al.Event is more valuable than you think:Improving the Similar Legal Case Retrieval via event knowledge[J].Information Processing and Management,2024,61(4):103729.
[31]CORREIA F,ALMEIDA A,et al.Fine-grained legal entity annotation:A case study on the Brazilian Supreme Court[J].Information Processing and Management,2022,59(1):102794.
[32]LIU D G,DU W H,LI L,et al.Augmenting Legal JudgmentPrediction with Contrastive Case Relations[C]//The 29th International Conference on Computational Linguistics.2022:2658-2667.
[33]YANG W M,JIA W J,ZHOU X J,et al.Legal Judgment Prediction via Multi-Perspective Bi-Feedback Network[C]//The Twenty-Eighth International Joint Conference on Artificial Intelligence.2019:4085-4091.
[34]XU N,WANG P H,CHEN L,et al.Distinguish Confusing Law Articles for Legal Judgment Prediction[C]//The 58th Annual Meeting of the Association for Computational Linguistics.2020:3086-3095.
[35]YUE L N,LIU Q,JIN B B,et al.NeurJudge:A Circumstance-aware Neural Framework for Legal Judgment Prediction[C]//The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:973-982.
[36]CUI Y M,CHE W X,LIU T,et al.Pre-Training With Whole Word Masking for Chinese BERT[J].IEEE/ACM Transactions on Audio,Speech and Language Processing,2021,29:3504-3514.
[37]XUE L T,CONSTANT N,ROBERTS A,et al.mT5:A Massively Multilingual Pre-trained Text-to-Text Transformer[C]//The 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:483-498.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!