计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 337-345.doi: 10.11896/jsjkx.240700197
陈锦韬1,3, 林兵2,3, 林崧1, 陈静3, 陈星3
CHEN Jintao1,3, LIN Bing2,3, LIN Song1, CHEN Jing3, CHEN Xing3
摘要: 光储充电站运营收益的提升,能够使充电站运营商加大对光储充电站基础设施的投资和部署,从而缓解日益增长的电动汽车渗透到电网时带来的负荷压力。针对光储充电站的运营收益提升问题,提出了一种基于多智能体深度强化学习的动态定价及能源调度策略,旨在提高完全合作关系下光储充电站的整体运营收益。首先,以最大化所有光储充电站的总运营收益为目标,将在单个光储充电站运营商下的多个光储充电站和电动汽车建模成马尔可夫博弈模型;其次,采用多智能体双延迟确定性策略梯度算法进行模型求解,通过制定充电服务价格和储能系统的充放电策略,以达到总运营收益最大化的目标,并通过余弦退火方法对算法学习率进行调整,提升该算法的收敛速率和收敛阈值;最后,为防止完全合作关系下多站可能出现的价格垄断问题,引入反需求函数对充电服务价格进行约束。实验结果表明,所提策略和对比方法相比,提高了4.17%~66.67%的充电站运营收益,且所用的反需求函数能够有效预防多站的价格垄断问题。
中图分类号:
[1]FANG Q.Energy storage operation strategy of optical storage charging station based on PPO algorithm[J].Electric Engineering,2024(2):97-100. [2]LIU Y X,ZHANG S,GUO L,et al.A coordinated optimalscheduling method of distribution grid and photovoltaic storage charging station taking into account electric energy-standby coupling[J].Power System Technology,2024,48(8):3175-3185. [3]LEE S,CHOI D H.Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations:A privacy-preserving deep reinforcement learning approach[J].Applied Energy,2021,304:117754. [4]AFFOLABI L,SHAHIDEHPOUR M,GAN W,et al.Optimal transactive energy trading of electric vehicle charging stations with on-site PV generation in constrained power distribution networks[J].IEEE Transactions on Smart Grid,2021,13(2):1427-1440. [5]WANG R S,CHEN Z,XING Q,et al.A Modified Rainbow-Based Deep Reinforcement Learning Method for Optimal Scheduling of Charging Station[J].Sustainability,2022,14(3):1884. [6]ZHANG S,LIU J J,SU Y T.Research on real-time controlstrategy of optical storage charging station based on PSO-DDPG algorithm[J].Mechanical and Electrical Information,2023(17):5-9. [7]YANG X Y,CUI T X,WANG H R,et al.Multiagent Deep Reinforcement Learning for Electric Vehicle Fast Charging Station Pricing Game in Electricity-Transportation Nexus[J].IEEE Transactions on Industrial Informatics,2024 20(4):6345-6355. [8]QIAN T,SHAO C,LI X,et al.Multi-agent deep reinforcement learning method for EV charging station game[J].IEEE Transactions on Power Systems,2021,37(3):1682-1694. [9]ACKERMANN J,GABLER V,OSA T,et al.Reducing overestimation bias in multi-agent domains using double centralized critics[J].arXiv:1910.01465,2019. [10]HUANG Z Q,LIN B,LU Y,et al.A charging station siting andcapacity determination method for multi-objective optimization[J].Journal of Fujian Normal University(Natural Science Edition),2024,40(2):23-35. [11]QUE H K,FENG X F,GUO W C,et al.Charging station layout model based on fuzzy bi-objective planning[J].Computer Science,2022,39(3):751-757. [12]WANG S,BI S,ZHANG Y A.Reinforcement learning for real-time pricing and scheduling control in EV charging stations[J].IEEE Transactions on Industrial Informatics,2019,17(2):849-859. [13]XU H,WU Q,WEN J,et al.Joint bidding and pricing for electricity retailers based on multi-task deep reinforcement learning[J].International Journal of Electrical Power & Energy Systems,2022,138:107897. [14]SHIN M J,CHOI D H,KIM J.Cooperative management forPV/ESS-enabled electric vehicle charging stations:A multiagent deep reinforcement learning approach[J].IEEE Transactions on Industrial Informatics,2019,16(5):3493-3503. [15]KABIR M E,ASSIC C,TUSHAR M H K,et al.Optimal scheduling of EV charging at a solar power-based charging station[J].IEEE Systems Journal,2020,14(3):4221-4231. [16]ZHOU X Y,QIAN L P,HUANG Y P,et al.An Optimization Method for Electric Vehicle Charging Scheduling Based on Ant Colony Algorithm[J].Computer Science.2020,47(11):280-285. [17]WU W T,LIN Y,LIU R H,et al.Online EV charge scheduling based on time-of-use pricing and peak load minimization:Properties and efficient algorithms[J].IEEE Transactions on Intelligent Transportation Systems,2020,23(1):572-586. [18]YU W W,LIU S L,CHEN Q G,et al.Multi-objective optimal scheduling of photovoltaic microgrids considering electric vehicle charging and demand-side response[J].Proceedings of the CSU-EPSA,2018,30(1):88-97. [19]HAO Y.Energy optimization management of new energy charging station based on genetic algorithm[J].Telecom Power Technologies,2019,36(11):27-28,31. [20]SU L,JIANG X C,WANG W,et al.Optimized energy management of microgrids taking into account electric vehicles and photovoltaic energy storage[J].Automation of Electric Power Systems,2015,39(9):164-171. [21]LYU C,ZHAN S,ZHANG Y,et al.Synergistic two-stage optimization for multi-objective energy management strategy of integrated photovoltaic-storage charging stations[J].Journal of Energy Storage,2024,89:111665. [22]MURIITHI G,CHOWDHURY S.Optimal energy management of a grid-tied solar pv-battery microgrid:A reinforcement learning approach[J].Energies,2021,14(9):2700. [23]CUI L,WANG Q,QU H,et al.Dynamic pricing for fast charging stations with deep reinforcement learning[J].Applied Energy,2023,346:121334. [24]LEE S,CHOI D H.Three-Stage Deep Reinforcement Learning for Privacy-and Safety-Aware Smart Electric Vehicle Charging Station Scheduling and Volt/VAR Control[J].IEEE Internet of Things Journal,2023,11(5):8578-8589. [25]QIAN T,SHAO C,LI X,et al.Multi-agent deep reinforcement learning method for EV charging station game[J].IEEE Transactions on Power Systems,2021,37(3):1682-1694. [26]VARIAN H R.Intermediate microeconomics with calculus:amodern approach[M].New York:W.W.NORTON & Company,2014:114-115. [27]LOWE R,WU Y I,TAMAR A,et al.Multi-agent actor-critic for mixed cooperative-competitive environments[C]//Advances in Neural Information Processing Systems.2017. [28]ZHANG Y,YANG Q,AN D,et al.Multistep multiagent reinforcement learning for optimal energy schedule strategy of charging stations in smart grid[J].IEEE Transactions on Cyber-netics,2022,53(7):4292-4305. |
|