计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241000150-6.doi: 10.11896/jsjkx.241000150

• 人工智能 • 上一篇    下一篇

基于牛顿-拉夫森优化无迹卡尔曼滤波的锂电池荷电状态估计

张浩男, 张安彩, 潘广源, 郑文博   

  1. 临沂大学自动化与电气工程学院 山东 临沂 276000
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 张安彩(zhangancai@lyu.edu.cn)
  • 作者简介:zhang_hn0020@163.com
  • 基金资助:
    山东省泰山学者人才项目(tsqn202211240);山东省自然科学基金项目(ZR2024MF041)

Lithium Battery State of Charge Estimation Based on Newton-Raphson Optimized UnscentedKalman Filter Algorithm

ZHANG Haonan, ZHANG Ancai, PAN Guangyuan, ZHENG Wenbo   

  1. School of Automation and Electrical Engineering,Linyi University,Linyi,Shandong 276000,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    Shandong Taishan Scholar Program(tsqn202211240) and Natural Science Foundation Program of Shandong Province(ZR2024MF041).

摘要: 随着电动汽车和储能系统对电池管理系统精度要求的提高,如何准确估计锂电池的荷电状态成为关键。为提升锂电池荷电状态估计的精度,提出了一种基于牛顿-拉夫森优化无迹卡尔曼滤波的荷电状态估计方法。首先,基于二阶RC等效电路建立了锂电池的数学模型。然后,为减少噪声初值对荷电状态估计精度的影响,采用牛顿-拉夫森算法对无迹卡尔曼滤波算法的观测噪声和过程噪声的初始协方差矩阵进行优化,增强了算法对噪声影响的适应性。最后,通过增量电流实验数据对锂电池模型参数进行辨识,并在恒流-静置和动态压力测试工况下对锂电池荷电状态进行了实验验证。结果显示,与传统的无迹卡尔曼滤波算法相比,不管是平均绝对误差指标还是均方根误差指标,所提出的算法均具有较高的精确度与稳定性,这为优化电池管理和保障电池安全运行提供了重要技术支持。

关键词: 锂离子电池, 荷电状态估计, 无迹卡尔曼滤波, 牛顿-拉夫森算法

Abstract: With the increasing precision requirements of battery management systems(BMS) in electric vehicles and energy sto-rage systems,the accurate estimation for the state of charge(SOC) of lithium-ion batteries becomes critical.To enhance the SOC estimation accuracy,this paper develops a new method using the Newton-Raphson optimized unscented Kalman filter(UKF) algorithm.Firstly,the mathematical model of lithium-ion battery is constructed based on a second-order RC equivalent circuit.In order to reduce the influence of noise’s initial value on SOC estimation accuracy,the Newton-Raphson algorithm is used to optimize the initial covariance matrices of process noise and observation noise in the UKF algorithm.This enhances the adaptability of the algorithm to the impact of noise.Finally,the incremental current experimental data are utilized to identify the parameters of the battery model.And the SOC estimation performance is validated through experiments conducted under constant current-rest and dynamic pressure test conditions.The experimental results show that the presented estimating algorithm has high precision and stability in both mean absolute error and root mean square error indices compared to the traditional UKF algorithm.This provides important technical support for optimizing battery management and ensuring the safe operation of lithium-ion batteries.

Key words: Lithium battery, SOC estimation, Unscented Kalman filter, Newton-Raphson algorithm

中图分类号: 

  • TP273
[1]MENG J H,RICCO M,LUO G Z,et al.An overview and comparison of online implementable SOC estimation methods for lithium-ion battery[J].IEEE Transactions on Industry Applications,2017,54(2):1583-1591.
[2]HUANG Z J,FANG Y S,XUJ J.Soc estimation of li-ion battery based on improved ekf algorithm[J].International Journal of Automotive Technology,2021,22:335-340.
[3]REN H B,ZHAO Y Z,CHEN S Z,et al.Design and implementation of a battery management system with active charge ba-lance based on the SOC and SOH online estimation[J].Energy,2019,166:908-917.
[4]LIU Q,SUN H.Design of BMS and estimation of SOC[J].Chinese Journal of Power Sources,2014,38(5):897-899,905.
[5]SUN D,XV S,LI C,et al.Review of state of charge estimation method for Li-ion battery[J].Battery Bimonthly,2018,48(4):284-287.
[6]JI Y X,DU H J,SUN H.A Survey of State of Charge EstimationMethods[J].Electrical Measurement & Instrumentation,2014,51(4):18-22.
[7]CHEMALI E,KOLLMEYER P J,PREINDL M,et al.Longshort-term memory networks for accurate state-of-charge estimation of Li-ion batteries[J].IEEE Transactions on Industrial Electronics,2017,65(8):6730-6739.
[8]YANG F F,LI W H,LI C,et al.State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J].Energy,2019,175:66-75.
[9]HE H W,QIN H Z,SUN X K,et al.Comparison study on thebattery SOC estimation with EKF and UKF algorithms[J].Energies,2013,6(10):5088-5100.
[10]XING J,WU P.State of charge estimation of lithium-ion battery based on improved adaptive unscented Kalman filter[J].Sustainability,2021,13(9):5046.
[11]WU Z Q,WANG G Y,XIE Z K,et al.Joint Estimation of the Capacity and SOC of Lithium BatteryBased on WOA-UKF Algorithm[J].Acta Metrologica Sinica,2022,43(5):649-656.
[12]DENG H,YANG L,DENGZ W,et al.Lithium-Ion Battery Parameter Identification and SOC Estimation Based on Electrochemical Models[J].Journal of University of Shanghai for Science and Technology,2018,40(6):557-565.
[13]SOWMYA R,PREMKUMAR M,JANGIR P.Newton-Raph-son-based optimizer:A new population-based metaheuristic algorithm for continuous optimization problems[J].Engineering Applications of Artificial Intelligence,2024,128:107532.
[14]WU Z,WANG G,XIE Z,et al.Lithium battery SOC estimation based on whale optimization algorithm and unscented Kalman filter[J].Journal of Renewable and Sustainable Energy,2020,12(6):065501.
[15]FENG T H,YANG L,ZHAO X W,et al.Online identification of lithium-ion battery parameters based on an improved equivalent-circuit model and its implementation on battery state-of-power prediction[J].Journal of Power Sources,2015,281:192-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!