计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250100126-6.doi: 10.11896/jsjkx.250100126
段鹏松1, 高杨1, 张大龙1, 曹仰杰1, 赵杰2
DUAN Pengsong1, GAO Yang1, ZHANG Dalong1, CAO Yangjie1, ZHAO Jie2
摘要: 风电塔筒作为整个风电设备的支撑结构,其安全性至关重要。裂缝作为风电塔筒主要的病害之一,对其进行准确检测十分有必要。受限于特征提取能力不足,现有的裂缝检测算法存在精度较低、模型复杂度较高的问题,不能很好满足端侧设备现场检测的需求。为此,文中提出了一种基于YOLO的风电塔筒安全性检测算法C2P-YOLO。在主干网络部分,该算法利用轻量级的特征提取模块C2P来代替冗余的网络结构,以提取特征图中更丰富的特征信息。在颈部网络部分,该算法添加了轻量化上采样CARFE和注意力机制模块,以补充特征融合过程中的信息损失。实验结果表明,该算法在公开数据集NEU-DET上的mAP分数达到84.9%,相较于同类算法提升了3%~8%,且能保持较好的轻量化特性。
中图分类号:
| [1]SHAN L.Selection of the wind turbine tower structure and mechanical properties research[D].Harbin:Harbin Institute of Technology,2009:12-15. [2]HAN Q,ZHANG Z,XU X Y,et al.Steel surface defect detection algorithm based on FF R-CNN[J].Journal of Taiyuan University of Technology,2021,52(5):754-763. [3]SI S L.Light weight YOLOv4 steel surface defect detectionmethod[D].Fuxin:Liaoning University of Engineering and Technology,2022. [4]DING S,YANG C,ZHANG S.Acoustic-Signal-Based Damage Detection of Wind Turbine Blades-A Review[J].Sensors,2023,23(11):4987. [5]ZHANG Y,YANG Y,SUN J,et al.Surface Defect Detection of Wind Turbine Based on Lightweight YOLOv5s Model[J].Measurement,2023:113222. [6]GENG R S,SHEN G T,LIU S F.Acoustic emission signal processing and analysis technology[J].Nondestructive Testing,2002,24(1):23-28. [7]XU D,LIU P F,CHEN Z P.Damage mode identification andsingular signal detection of composite wind turbine blade using acoustic emission[J].Composite Structures,2021,255:112954. [8]ZHAO Z,CHEN N Z.Acoustic emission based damage source localization for structural digital twin of wind turbine blades[J].Ocean Engineering,2022. [9]BEJGER A,DRZEWIENIECKI J B,BARTOSZKO P,et al.The Use of Coherence Functions of Acoustic Emission Signals as a Method for Diagnosing Wind Turbine Blades[J].Energies,2023,16(22):7474. [10]LI J,SU Z,GENG J,et al.Real-time detection of steel strip surface defects based on improved YOLO detection network[J].IFAC-Papers On Line,2018,51:76-81. [11]ZHANG C,CHANG C,JAMSHIDI M.Concrete bridge surface damage detection using a single-stage detector[J].Comput-Aided Civil Infrastruct Eng,2020,35:389-409. [12]LIU Q,WANG C,LI Y,et al.A Fabric Defect Detection Method Based on Deep Learning [J].IEEE Access,2022,10:4284-96. [13]OLIVIER R,HANQIANG C.Nearest Neighbor Value Interpolation[J].International Journal of Advanced Computer Science &Application,2012,3(4):25-30. [14]WANG J,CHEN K,XU R,et al.Carafe:Content-aware reas-sembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3007-3016. [15]LIN H,JING C,HUANG Y,et al.A2 Net:Adjacent Aggregation Networks for Image Raindrop Removal[J].IEEE Access,2020,PP(99):1. [16]SONG K,YAN Y.A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J].Applied Surface Science,2013,285:858-864. [17]LV X,DUAN F,JIANG J,et al.Deep metallic surface defect detection:The new benchmark and detection network[J].Sensors,2020,20(6):1562. |
|
||