计算机科学 ›› 2025, Vol. 52 ›› Issue (12): 158-165.doi: 10.11896/jsjkx.241000124
周啟雪, 余映, 胡家绿
ZHOU Qixue, YU Ying, HU Jialv
摘要: 中国古代壁画是珍贵的人类文化遗产,记录了中国历代各地区人们的社会、宗教、文化、艺术活动等方面的特征。由于长时间暴露在自然环境中,很多壁画出现了裂隙、划痕、腐蚀、甚至大面积脱落等病害现象,因此,壁画的保护和修复工作非常迫切。破损壁画数字修复技术通过重新构建壁画图像的结构和纹理,对其破损区域进行虚拟填充,成为解决这一问题的重要手段。大多现有的壁画图像修复方法难以较好地修复结构复杂、色彩丰富变化的缺失壁画内容。针对该问题,提出利用Involution级联注意力机制的古代壁画图像修复网络。该网络首先利用对合(Involution)操作代替传统卷积,以提高破损壁画纹理和颜色修复的质量。其次,提出一个级联注意力模块,可以捕捉不同尺度的上下文信息,更好地修复不同大小的壁画破损区域。此外,引入FFC残差块来捕捉全局结构信息,以提升网络对壁画破损区域的色彩修复能力。在模拟和真实破损壁画数据集上进行实验,将修复结果与其他4种经典方法进行比较。实验结果表明,提出的模型在修复壁画纹理清晰度、颜色一致性和结构连续性方面均优于其他对比方法。
中图分类号:
| [1]LIANG Y,GUO D.Research on the color representation ofDunhuang mural art[C]//Proceedings of the 2017 2nd International Conference on Education,Sports,Arts and Management Engineering.2017. [2]DENG X C,YU Y,YANG L X,et al.Automatic calibration algorithm for the diseased areas of Ming Dynasty murals in Jianshui Zhilin Temple [J].Journal of Computer Aided Design and Graphics,2023,35(10):1554-1565. [3]MARCELO B,GUILLERMO S,VINCENT C,et al.Image inpainting[C]//Proceedings of the 27th Annual Conference on Computer Gra-phics and Interactive Techniques.2020:417-424. [4]JAIDILERT S,FAROOQUE G.Crack Detection and Images Inpainting Method for Thai Mural Painting Images[C]//2018 IEEE 3rd International Conference on Image,Vision and Computing.2018:143-148. [5]ZHAO C X,LIU J N,LI B Q,et al.Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries[J].Advanced Functional Materials,2020,30(36):2003619. [6]JIAO L J,WANG W J,LI B J,et al.Wutai mountain mural inpainting based on improved block matching algorithm[J].Journal of Computer Aided Design and Graphics,2019,31(1):118-125. [7]CAO J,LI Y,ZHANG Q,et al.Restoration of an ancient temple mural by a local search algorithm of an adaptive sample block[J].Heritage Science,2019,7(1):39. [8]XU H,KANG J M,ZHANG J W.Digital Mural Restoration Method Based on Feature Perception [J].Computer Science,2022,49(6):217-223. [9]ZHANG L,YU Y,GE H.Mural Restoration Based on FastFourier Convolution and Feature Trimming Coordinate Attention [J].Computer Science,2024,51(S1):338-346. [10]CAO J,ZHANG Z,ZHAO A,et al.Ancient mural restoration based on a modified generative adversarial network[J].Heritage Science,2020,8:1-14. [11]WANG N,WANG W,HU W,et al.Thanka Mural Inpainting Based on Multi-Scale Adaptive Partial Convolution and Stroke-Like Mask[J].IEEE Transactions on Image Processing,2021,30:3720-3733. [12]LYU C,LI Z,SHEN Y,et al.SeparaFill:Two generators connected mural image restoration based on generative adversarial network with skip connect[J].Heritage Science,2022,10(1):135. [13]CHEN Y,CHEN J,TAO M F.Ural inpainting progressive ge-nerative adversarial networks based on structure guided[J].Journal of Beijing University of Aeronautics and Astronautics,2021,49(6):1247-1259. [14]LI J,WANG H,DENG Z,et al.Restoration of non-structural damaged murals in Shenzhen Bao’an based on a generator-discriminator network[J].Heritage Science,2021,9:1-14. [15]张茼茼,刘恒.基于潜在特征重构和注意力机制的人脸图像修复[J].重庆工商大学学报(自然科学版),2023,40(2):73-78. [16]YU T X,LIN C,ZHANG S J,et al.End-to-End Partial Convolutions Neural Networks for Dunhuang Grottoes Wall-Painting Restoration[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop.2019:1447-1455. [17]SCHMIDT A,MADHU P,MAIER A,et al.ARIN:Adaptive Resampling and Instance Normalization for Robust Blind Inpainting of Dunhuang Cave Paintings[C]//2022 Eleventh International Conference on Image Processing Theory,Tools and Applications(IPTA).2022. [18]CIORTAN I M,GEORGE S,HARDEBERG J Y.Colour-balanced edge-guided digital inpainting:Applications on artworks[J].Sensors,2021,21(6):2091. [19]CHI L,JIANG B,MU Y.Fast fourier convolution[J].Advances in Neural Information Processing Systems,2020,33:4479-4488. [20]BRIGHAM E O,MORROW R E.The fast Fourier transform[J].IEEE Spectrum,1967,4(12):63-70. [21]NAZERI K,NG E,JOSEPH T,et al.EdgeConnect:Structure Guided Image Inpainting using Edge Prediction[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop(ICCVW).2019:3265-3274. [22]LI J,HE F,ZHANG L,et al.Progressive Reconstruction of Vi-sual Structure for Image Inpainting[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).2019:5961-5970. [23]ANG N,ZHANG Y,ZHANG L.Dynamic Selection Network for Image Inpainting[J].IEEE Transactions on Image Processing,2021,30:1784-1798. [24]DENG J,DONG W,SOCHER R,et al.ImageNet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.2009:248-255. [25]ZENG Y,FU J,CHAO H,et al.Aggregated contextual transformations for high-resolution image inpainting[J].IEEE Transactions on Visualization and Computer Graphics,2022,29(7):3266-3280. [26]WANG N,ZHANG Y,ZHANG L.Dynamic selection networkfor image inpainting[J].IEEE Transactions on Image Proces-sing,2021,30:1784-1798. [27]NAZERI K,NG E,JOSEPH T,et al.Edgeconnect:Structureguided image inpainting using edge prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops.2019. [28]XIA B,ZHANG Y,WANG S,et al.Diffir:Efficient diffusionmodel for image restoration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:13095-13105. [29]LIU G,REDA F A,SHIH K J,et al.Image inpainting for irre-gular holes using partial convolutions[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:85-100. |
|
||