计算机科学 ›› 2026, Vol. 53 ›› Issue (1): 395-403.doi: 10.11896/jsjkx.241200118
陈尚煜1, 扈红超1, 张帅1,2, 周大成1,2, 杨晓晗1,2
CHEN Shangyu1, HU Hongchao1, ZHANG Shuai1,2, ZHOU Dacheng1,2, YANG Xiaohan1,2
摘要: 随着机器学习和深度学习的发展应用,攻击者可以通过Tor用户链路上的恶意节点以及恶意AS对其进行流量分析,从而对Tor用户进行去匿名化攻击。目前,常见的针对流量分析攻击的防御方法有两类:一类是通过插入虚拟数据包,或者延迟真实数据包从而改变流量特征,这种方法会引入带宽和时延开销;另一类将用户流量分割并通过多个路径传输从而进行防御,这种方法缺少对电路上存在的恶意节点以及恶意AS的感知,当攻击者搜集到完整流量踪迹时,依旧难以抵御流量分析对Tor用户的去匿名化攻击。为了弥补多路径防御方法在路径选择上存在的缺乏威胁感知的问题,提出了融合恶意节点感知以及恶意AS感知的基于威胁感知的多路径选择算法。首先提出一种改进的节点距离度量的方法,然后使用改进后的距离度量,基于K-Mediods算法对节点进行聚类,提高了恶意节点的检测效果;之后改进了AS感知算法,提高了匿名性要求;最后融合恶意节点检测以及AS感知算法提出了一种基于威胁感知的多路径选择算法。实验结果表明,该算法不仅能抵抗多种流量分析攻击,而且保证了一定的Tor电路性能。
中图分类号:
| [1]KARUNANAYAKE I,AHMED N,MALANEY R,et al.De-anonymisation attacks on tor:A survey[J].IEEE Communications Surveys & Tutorials,2021,23(4):2324-2350. [2]NASR M,BAHRAMALI A,HOUMANSADR A.Deepcorr:Strong flow correlation attacks on tor using deep learning[C]//Proceedings of the 2018 ACM SIGSAC Conference on Compu-ter and Communications Security.2018:1962-1976. [3]OH S E,YANG T,MATHEWS N,et al.DeepCoFFEA:Improved flow correlation attacks on Tor via metric learning and amplification[C]//2022 IEEE Symposium on Security and Privacy(SP).IEEE,2022:1915-1932. [4]AMINUDDIN M A I M,ZAABA Z F,SAMSUDIN A,et al.The rise of website fingerprinting on Tor:Analysis on techniques and assumptions[J].Journal of Network and Computer Applications,2023,212:103582. [5]RAHMAN S M,SIRINAM P,MATHEWS N,et al.Tik-Tok:The Utility of Packet Timing in Website Fingerprinting Attacks[C]//Proceedings on Privacy Enhancing Technologies.2020:5-24. [6]SIRINAM P,IMANI M,JUAREZ M,et al.Deep fingerprinting:Undermining website fingerprinting defenses with deep learning[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.2018:1928-1943. [7]SHEN M,JI K,GAO Z,et al.Subverting website fingerprinting defenses with robust traffic representation[C]//32nd USENIX Security Symposium(USENIX Security 23).2023:607-624. [8]XIAO X,ZHOU X,YANG Z,et al.A comprehensive analysis of website fingerprinting defenses on Tor[J].Computers & Security,2024,136:103577. [9]ABUSNAINA A,JANG R,KHORMALI A,et al.Dfd:Adversarial learning-based approach to defend against website fingerprinting[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications.IEEE,2020:2459-2468. [10]HONG X,MA X,LI S,et al.A website fingerprint defense technology with low delay and controllable bandwidth[J].Computer Communications,2022,193:332-345. [11]HENRI S,GARCIA-AVILES G,SERRANO P,et al.Protecting against Website Fingerprinting with Multihoming[C]//Proceedings on Privacy Enhancing Technologies.2020:89-110. [12]DE LA CADENA W,MITSEVA A,HILLER J,et al.Trafficsliver:Fighting website fingerprinting attacks with traffic splitting[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.2020:1971-1985. [13]BARTON A,WRIGHT M.DeNASA:Destination-Naive AS-Awareness in Anonymous Communications[C]//Proceedings on Privacy Enhancing Technologies.2016:356-372. [14]LYU M,ZHU Y F,LIN W.Dynamic Routing Algorithm Based on Bandwidth of Anonymous Network[J].Journal of Information Engineering University,2019,20(5):591-596. [15]FENG Q,XIA Y,YAO W,et al.Malicious Relay Detection for Tor Network Using Hybrid Multi-Scale CNN-LSTM with Attention[C]//2023 IEEE Symposium on Computers and Communications(ISCC).IEEE,2023:1242-1247. [16]ROCHET F,WAILS R,JOHNSON A,et al.CLAPS:Client-location-aware path selection in Tor[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.2020:17-34. |
|
||