计算机科学 ›› 2026, Vol. 53 ›› Issue (1): 413-422.doi: 10.11896/jsjkx.241100040

• 信息安全 • 上一篇    下一篇

基于注意力机制的文档图像屏摄鲁棒水印方法

张小敏, 赵军智, 和红杰   

  1. 西南交通大学信息科学与技术学院 成都 611756
  • 收稿日期:2024-11-06 修回日期:2025-02-08 发布日期:2026-01-08
  • 通讯作者: 和红杰(hjhe@swjtu.edu.cn)
  • 作者简介:(1403328341@qq.com)
  • 基金资助:
    国家自然科学基金(61872303,U1936113)

Screen-shooting Resilient Watermarking Method for Document Image Based on Attention Mechanism

ZHANG Xiaomin, ZHAO Junzhi, HE Hongjie   

  1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2024-11-06 Revised:2025-02-08 Online:2026-01-08
  • About author:ZHANG Xiaomin,born in 2000,master.Her main research interests include deep learning and digital watermarking.
    HE Hongjie,born in 1971,Ph.D,professor,Ph.D supervisor.Her main research interests include image processing and information security.
  • Supported by:
    National Natural Science Foundation of China(61872303,U1936113).

摘要: 屏摄鲁棒的水印算法在版权保护、追踪溯源等领域具有重要意义。现有的抗屏摄鲁棒水印算法大多关注于自然图像,忽视了对文档图像的研究。文档载体本身的冗余信息较少,水印的鲁棒性和不可感知性很难得到平衡。为解决这一问题,提出了一种基于注意力机制的文档图像屏摄鲁棒水印方法。为提升水印的不可感知性,在编码器网络中引入注意力特征融合模块,实现浅层特征和深层特征的自适应聚合。为提高算法的鲁棒提取能力,在解码器网络中设计了自适应通道与空间注意力模块,突出通道和空间维度中与水印信息高度相关的特征。同时,在屏摄噪声模拟过程中设计了摩尔纹失真层,以提高算法抵抗真实摩尔纹干扰的鲁棒性能。实验结果显示,所提方法的平均PSNR为33.4 dB,SSIM为0.988 5,RMSE为5.48,在多种屏摄场景的平均提取准确率可达99.49%。在图像质量和水印鲁棒性方面,均优于现有同类方法。

关键词: 屏摄鲁棒水印, 文档图像, 注意力特征融合, 自适应通道与空间注意力, 摩尔纹失真

Abstract: Screen-shooting resilient watermarking algorithms are of significant importance in fields such as copyright protection and traceability.Existing screen-shooting resilient watermarking algorithms mostly focus on natural images,neglecting research on document images.Document carriers inherently contain less redundant information,making it challenging to balance robustness and imperceptibility of the watermark.To address this issue,a screen-shooting resilient watermarking method for document image based on attention mechanism is proposed.To enhance the imperceptibility of the watermark,an attention feature fusion module is introduced in the encoder network to adaptively aggregate shallow and deep features.To improve the robustness of the algorithm for extraction,an adaptive channel-spatial attention module is designed in the decoder network to emphasize features that are particularly important in both channel and spatial dimensions.Additionally,a Moiré distortion layer is designed during screen-shoo-ting noise simulation to enhance the algorithm’s robustness against real Moiré distortions.Experimental results demonstrate that the proposed method achieves an average PSNR of 33.4 dB,SSIM of 0.988 5,RMSE of 5.48,and an average extraction accuracy of 99.49% in various screen-shooting scenarios.In terms of image quality and watermark robustness,the proposed method outperforms existing similar methods.

Key words: Screen-shooting resilient watermarking, Document images, Attention feature fusion, Adaptive channel-spatial attention, Moiré distortion

中图分类号: 

  • TP391
[1]GUAN H,HUANG Y,ZHANG S,et al.A Survey of Screen Shooting Resilient Image Watermarking Algorithms[C]//2023 International Conference on Culture-Oriented Science and Technology.IEEE,2023:12-17.
[2]FANG H,ZHANG W,ZHOU H,et al.Screen-shooting resilient watermarking[J].IEEE Transactions on Information Forensics and Security,2018,14(6):1403-1418.
[3]FANG H,ZHANG W,MA Z,et al.A camera shooting resilient watermarking scheme for underpainting documents[J].IEEE Transactions on Circuits and Systems for Video Technology,2019,30(11):4075-4089.
[4]CHENG Y,JI X,WANG L,et al.{mID}:Tracing screen photos via {Moiré} patterns[C]//30th USENIX Security Symposium.2021:2969-2986.
[5]GUGELMANN D,SOMMER D,LENDERS V,et al.Screen watermarking for data theft investigation and attribution[C]//2018 10th International Conference on Cyber Conflict.IEEE,2018:391-408.
[6]WENGROWSKI E,DANA K.Light field messaging with deep photographic steganography[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:1515-1524.
[7]TANCIK M,MILDENHALL B,NG R.Stegastamp:Invisiblehyperlinks in physical photographs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:2117-2126.
[8]FANG H,JIA Z,MA Z,et al.Pimog:An effective screen-shooting noise-layer simulation for deep-learning-based watermarking network[C]//Proceedings of the 30th ACM International Conference on Multimedia.2022:2267-2275.
[9]GE S,FEI J,XIA Z,et al.A screen-shooting resilient document image watermarking scheme using deep neural network[J].IET Image Processing,2023,17(2):323-336.
[10]PENG W P,LIU J B,PING Y,et al.Model protection scheme for fusion of internal and external feature watermarks[J].Journal of Chongqing University of Posts and Telecommunication(Natural Science Edition),2024,36(4):765-774.
[11]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015).Springer,2015:234-241.
[12]YUAN S,TIMOFTE R,SLABAUGH G,et al.Aim 2019 challenge on image demoireing:Methods and results[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop.IEEE,2019:3534-3545.
[13]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[14]CHEN Z,HE Z,LU Z M.DEA-Net:Single image dehazingbased on detail-enhanced convolution and content-guided attention[J].arXiv:2301.04805,2023.
[15]DAI Y,GIESEKE F,OEHMCKE S,et al.Attentional featurefusion[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2021:3560-3569.
[16]JIA Z,FANG H,ZHANG W.Mbrs:Enhancing robustness of dnn-based watermarking by mini-batch of real and simulated jpeg compression[C]//Proceedings of the 29th ACM International Conference on Multimedia.2021:41-49.
[17]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[18]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block at-tention module[C]//Proceedings of the European Conference on Computer Vision.2018:3-19.
[19]SHIN R,SONG D.Jpeg-resistant adversarial images[C]//NIPS 2017 Workshop on Machine Learning and Computer Security.2017:8.
[20]ZHANG R,ISOLA P,EFROS A A,et al.The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:586-595.
[21]GE S,XIA Z,FEI J,et al.A robust document image watermar-king scheme using deep neural network[J].Multimedia Tools and Applications,2023,82(25):38589-38612.
[22]KINGMA D P,BA J.Adam:A method for stochastic optimiza-tion[J].arXiv:1412.6980,2014.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!