计算机科学 ›› 2015, Vol. 42 ›› Issue (11): 112-117.doi: 10.11896/j.issn.1002-137X.2015.11.024

• 2014年全国高性能计算机学术年会 • 上一篇    下一篇

一种基于Sigmoid函数的抑制Halo效应的有效算法

陈丽,郭玉坤,李金屏   

  1. 济南大学信息科学与工程学院 济南250022山东省网络环境智能计算技术重点实验室 济南250022,济南大学信息科学与工程学院 济南250022山东省网络环境智能计算技术重点实验室 济南250022,济南大学信息科学与工程学院 济南250022山东省网络环境智能计算技术重点实验室 济南250022
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金青年基金:融合尺度行为模式与环境上下文的家庭服务模式获取研究(61203341),山东省高等学校科研计划项目:基于视觉分析的机器人导航系统关键技术研究(J12LN19)资助

Effective Algorithm to Inhibit Halo Effect Based on Sigmoid Function

CHEN Li, GUO Yu-kun and LI Jin-ping   

  • Online:2018-11-14 Published:2018-11-14

摘要: 人们通常利用暗通道先验理论进行图像去雾,其副作用之一就是光晕现象,即Halo效应。在深入分析光晕效应特点的基础上,提出了一种基于Sigmoid函数的抑制Halo效应的有效算法。首先对带有光晕的图像进行大量观察,总结了光晕产生的位置规律及结构特性,构造了一个具有方向性的Sigmoid模板;然后对由暗通道先验理论得到的粗略透射率图进行边缘检测,获得景深突变处像素点的坐标和方向角;其次,再利用已构造的模板判断该处出现光晕的准确位置,并将非光晕区域的像素值赋给光晕区域,得到优化后的透射率图;最后引入一种容差机制还原出清晰无光晕的图像。本算法的特色在于所构造的模板仅仅处理出现光晕的区域,而不是处理整个图像区域,因此避免了传统方法中非光晕区域的颜色失真问题。实验结果表明,本算法简单易行,运行速度快,复原效果好。

关键词: 图像去雾,暗通道先验,Halo效应,Sigmoid函数,容差机制

Abstract: Dark channel prior theory is usually employed to reduce the effect of fog,however,a bad halo effect often exi-sts.After extensive analysis of halo effect,we proposed an effective algorithm to inhibit the halo effect based on Sigmoid function.Firstly,after many observations of images with halo effect,we found the characteristic of halo effect’s location and sturcture,so we constructed a Sigmoid model with directivity.Secondly,we performed the edge detection of transmission image obtained by dark channel prior,and then obtained the coordinates and edge directions of pixels located at the place of sudden change of depth of field.Thirdly,we used the constructed model to determine the precise locations of those pixels,filled halo region with pixel values of non-halo region,and then obtained optimized transmission image.Finally,we could obtain the clear image with weak halo effect by using the optimized transmission image and introducing a kind of tolerance mechanism.Our algorithm’s characteristic consists in only processing the halo region using the constructed model rather than processing the whole image region,so our method avoids such problem as color distortion in no halo region.The experimental results demonstrate that our method is simple and easy,with faster computational speed and better restoration effect for fog image.

Key words: Haze removal,Dark channel prior,Halo effect,Sigmoid function,Tolerance mechanism

[1] 禹晶,徐东彬,廖庆敏.图像去雾技术研究进展[J].中国图象图形学报,2011,6(9):1561-1575 Yu J,Xu D B,Liao Q M.Image defogging:a survey[J].Journal of Image and Graphics,2011,6(9):1561-1575
[2] 郭璠.图像去雾方法和评价及其应用研究[D].长沙:中南大学,2012 Guo P.Research on Image Defogging,Effect Assessment and Application[D].Changsha:Central South University,2012
[3] Namer E,Schechner Y Y.Advanced visibility improvementbased on polarization filtered images[C]∥Proceedings of the Polarization Science and Remote Sensing,2005.San Diego,USA:SPIE,2005:36-45
[4] He K M,Sun J,Tang X O.Single image haze removal using dark channel prior[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2009.Miami,USA:IEEE,2009:1956-196
[5] 钟乾龙.单幅图像去雾处理算法研究及软件实现[D].成都:西南交通大学,2012 Zhong Q L.The Research of Single Image-Defogging Processing Algorithm and Software Implement[D].Chengdu:Southwest Jiaotong University,2012
[6] Tarel J,Hauti N.Fast visibility restoration from a single color or gray level image[C]∥Proceedings of IEEE International Conference on Computer Vision(ICCV),2009.Kyoto,Japan:IEEE Computer Society,2009:2201-2208
[7] 禹晶,李大鹏,廖庆敏.基于物理模型的快速单幅图像去雾方法[J].自动化学报,2011,7(2):143-149 Yu J,Li D P,Liao Q M.Physics-based Fast Single Image Fog removal[J].Acta Automatica Sinica,2011,7(2):143-149
[8] 方帅,王勇,曹洋.单幅雾天图像复原[J].电子学报,2010,8(10):2279-2284 Fang S,Wang Y,Cao Y.Restoration of Image Degraded by Haze[J].Acta Electronica Sinica,2010,8(10):2279-2284
[9] 褚宏莉,李元祥,周则明,等.基于黑色通道的图像快速去雾优化算法[J].电子学报,2013,1(4):791-797 Chu H L,Li Y X,Zhou Z M,et al.Optimized Fast Dehazing Method Based on Dark Channel Prior[J].Acta Electronic Sinica,2013,41(4):791-797
[10] Narasimhan S G,Nayar S K.Chromatic framework for vision in bad weather[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2000.Hilton Head Island,SC,USA:IEEE Computer Society,2000:1598-1605
[11] Fattal R.Single image dehazing[J].ACM Transaction onGraphics,2008,7(3):1-9
[12] 蒋建国,侯天峰,齐美彬.改进的基于暗原色先验的图像去雾算法[J].电路与系统学报,2011,6(2):7-12 Jiang J G,Hou T F,Qi M B.Improved Algorithm on Image Haze Removal Using Dark Channel Prior[J].Journal of Circuits and Systems,2011,6(2):7-12
[13] Tan R.Visibility in bad weather from a single image[C]∥Proceedings of IECVPR,2008.Anchorage,Alaska:IEEE Computer Society,2008:1-8
[14] 王一帆,尹传历,黄义明,等.基于双边滤波的图像去雾[J].中国图象图形学报,2014,9(3):386-392 Wang Y F,Yin C L,Huang Y M,et al.Image Haze Removal Using a Bilateral Filter[J].Journal of Image and Graphics,2014,9(3):386-392

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .
[10] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .