计算机科学 ›› 2015, Vol. 42 ›› Issue (7): 165-169.doi: 10.11896/j.issn.1002-137X.2015.07.036

• 网络与通信 • 上一篇    下一篇

基于扰动特征分解和前馈调制的网络波动跳变信号抑制算法

陈卫军,睢 丹   

  1. 华东师范大学软件学院 上海200241;安阳师范学院软件学院 安阳455000,安阳师范学院软件学院 安阳455000
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受河南省科技厅基础与前沿研究项目(112300410129),河南省教育厅自然科学研究计划项目(2011B520001)资助

Suppression Algorithm of Network Fluctuation Hop Signal Based on Perturbation Characteristic Decomposition and Feedforward Modulation

CHEN Wei-jun and SUI Dan   

  • Online:2018-11-14 Published:2018-11-14

摘要: 在网络切换和数据通信中,会产生一种网络波动下的时频跳变谐振信号,需要对这种网络波动跳变信号进行抑制,以提高网络稳定性。提出一种基于扰动特征分解和前馈调制的网络波动跳变信号抑制算法,构建网络波动跳变信号谐振数学模型,采用射线模型对网络跳变单频脉冲中的波动信号进行传播损失估计,基于多普勒频移算法提取扰动特征,利用混响慢变包络切片把波动跳变信号的能量聚集在扰动方向,在希尔伯特空间上对网络波动跳变信号进行扰动特征分解。设计前馈调制滤波器,实现对网络波跳变信号的前馈调制抑制。仿真结果表明,该算法能有效抑制网络波动跳变中的谐振信号,避免了信息损失,数据传输丢包率得到降低,实时性好,解决了大规模混合组网中启动滞后、服务器负载、颤抖等问题。

关键词: 网络,扰动特征分解,信号,前馈调制

Abstract: In the network switching and data communication,a network time-frequency hop resonant signal can be produced,and such fluctuation hop signal should be suppressed to improve network stability.An improved suppression algorithm of network fluctuation hop signal was proposed based on perturbation characteristic decomposition and feedforward modulation,and the network fluctuation hop signal resonant mathematical model was constructed.The ray model was used to estimate the transmission loss,Doppler frequency shift algorithm was used to extract disturbance characteristics,and slowly varying envelope slice was used to gather the signal energy in the disturbance direction.In the Hilbert space,perturbation characteristic decomposition was obtained,the feedforward filter was designed,and the signal suppression was completed.The simulation results show that this algorithm can effectively suppress the resonant signal in network fluctuation hop,the information loss is avoided,data packet loss rate is reduced,and it has good real-time performance.The problems such as network startup delay,server load,trembling are solved.

Key words: Network,Disturbance feature decomposition,Signal,Feedforward modulation

[1] 靳晓艳,周希元,张琬琳.多径衰落信道中基于自适应 MCMC的调制识别[J].北京邮电大学学报,2014,7(1):31-34 Jin Xiao-yan,Zhou Xi-yuan,Zhang Wan-lin.Modulation Recognition Using Adaptive MCMC in Multipath Fading Channel[J].Journal of Beijing University of Posts and Telecommunications,2014,37(1):31-34
[2] 韩慧鹏,梁红,胡旭娟.自适应IIR陷波器在信号检测中的应用[J].弹箭与制导学报,2008,8(2):315-317 Han Hui-peng,Liang Hong,Hu Xu-juan.Signal Detection Based on Adaptive IIR Notch Filter[J].Journal of Projectiles,Roc-kets,Missiles and Guidance,2008,8(2):315-317
[3] Xie S L,Liu Y,Yang J M,et al.Time-Frequency Approach to Underdetermined Blind Source Separation[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(2):306-315
[4] 饶雨泰,杨凡.网络入侵搅动下的网络失稳控制方法研究[J].科技通报,2014,0(1):185-188 Rao Yu-tai,Yang fan.Network Intrusion Stir the Network Instability Control Methods of the Research[J].Bulletin of Science and Technology,2014,0(1):185-188
[5] 黎峰,吴春明.基于能量管理的网络入侵防波动控制方法研究[J].计算机仿真,2013,0(12):45-48,335 Li Feng,Wu Chun-ming.Research on Prevention Fluctuation Control method of Network Intrusion Based on Energy Management[J].Computer simulation,2013,0(12):45-48,335
[6] Alfaro V M,Vilanovab R.Robust tuning of 2DoF five-parameter PID controllers for inverse response controlled processes[J].Journal of Process Control,2013,3(4):453-462
[7] 杨明,郝亮,徐殿国.基于自适应陷波滤波器的在线机械谐振抑制[J].哈尔滨工业大学学报,2014,6(4):63-69 Yang Ming,Hao Liang,Xu Dian-guo.Online suppression of mechanical resonance based on adapting notch filter[J].Journal of Harbin Institute of Technology,2014,6(4):63-69
[8] 王瑞,马艳.基于分数阶傅里叶变换的线性调频脉冲信号波达方向估计[J].兵工学报,2014,5(3):421-427 Wang Rui,Ma Yan.DOA Estimation of Wideband Linear Frequency Modulated Pulse Signals Based on Fractional Fourier Transform[J].Acta Armamentarii,2014,5(3):421-427
[9] 欧世峰,高颖,赵晓晖.自适应组合型盲源分离算法及其优化方案[J].电子与信息学报,2011,33(5):1243-1247 Ou Shi-feng,Gao Ying,Zhao Xiao-hui.Adaptive Combination Algorithm and Its Modified Scheme for Blind Source Separation[J].Journal of Electronics & Information Technology,2011,33(5):1243-1247
[10] 刘逻,郭立红,肖辉,等.基于参数动态调整的动态模糊神经网络的软件可靠性增长模型[J].计算机科学,2013,40(2):186-190 Liu Luo,Guo Li-hong,Xiao Hui,et al.Software Reliability Growth Model Based on Dynamic Fuzzy Neural Network with Parameters Dynamic Adjustment[J].Computer Science,2013,40(2):186-190
[11] 方科.高动态扩频信号捕获的多普勒补偿[J].四川兵工学报,2013,34(7):122-124 Fang Ke.Research on Doppler Compensation in Acquisition of High Dynamic Spread Spectrum Signals[J].Journal of Sichuan Ordance,2013,4(7):122-124

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!