计算机科学 ›› 2015, Vol. 42 ›› Issue (5): 234-236, 244.doi: 10.11896/j.issn.1002-137X.2015.05.047

• 人工智能 • 上一篇    下一篇

基于小波变换和FRVM的电能质量扰动分类

马苹苹,黄文清   

  1. 湖南大学电气与信息工程学院 长沙410006,湖南大学电气与信息工程学院 长沙410006
  • 出版日期:2018-11-14 发布日期:2018-11-14

Classification of Power Quality Disturbances Based on Wavelet Transform and FRVM

MA Ping-ping and HUANG Wen-qing   

  • Online:2018-11-14 Published:2018-11-14

摘要: 针对相关向量机(RVM)计算复杂度大、训练时间长的问题,提出一种基于快速相关向量机(FRVM)的优化算法,其大大减少了相关向量机的训练时间,提高了分类的精度。将它应用于电能质量扰动分类中,首先对电能质量扰动信号进行基于小波变换的时频分析,提取小波变换各层信号的能量与标准信号的能量之差组成特征向量;然后用FRVM对特征量进行分类,进而实现基于小波变换和FRVM的电能质量扰动分类新方法。实验仿真验证了该方法能够对各类电能质量扰动信号进行分类,并且其分类效率和准确率均优于传统的相关向量机分类方法。

关键词: 电能质量,快速相关向量机,扰动分类

Abstract: To reduce the computational complexity and long training time in relevance vector machine(RVM),this paper proposed an optimized algorithm based on fast relevance vector machine(FRVM),which not only greatly reduces the training time of relevance vector machine,but also improves its classification accuracy.This method is applied to the classification of power quality disturbances.Firstly,the wavelet transform is applied to analysis the time-frequency features of the power quality disturbances,and the difference of the energy of the wavelet transform signal in each layer and the standard signal energy is used as feature vector.Secondly,FRVM is used to classify the feature vector to realize power quality disturbances classification based on wavelet transform and FRVM.The simulation verifies that this method can classify all kinds of power quality disturbances,and has higher classification efficiency and accuracy than the classical RVM.

Key words: Power quality,FRVM,Disturbance classification

[1] Santoso S,Grady W M,Powers E J,et al.Characterization of distribution power quality events with Fourier and wavelet transforms[J].IEEE Trans.Power Del,2000,15(1):247-254
[2] 覃思师,刘前进.基于STFT变换和DAGSVMs的电能质量扰动识别[J].电力系统保护与控制,2011,39(1):83-86
[3] 胡为兵,李开成,张明,等.基于小波变换和分形理论的电能质量扰动监控系统[J].电网技术,2008,32(12):51-55
[4] 赵凤展,杨仁刚.基于s变换和时域分析的电能质量扰动识别[J].电网技术,2006,30(8):90-94
[5] Reaz M,Choong F,Sulaiman M.Expert system for power quality disturbance classifier[J].IEEE Transactions on Power Delive-ry,2007,22(3):1979-1988
[6] 赵静,何正友,贾勇,等.基于高阶累积量的暂态电能质量扰动分类研究[J].电网技术,2011,35(5):103-109
[7] 赵立权,谢妮娜.基于小波变换和改进的RVM的电能质量扰动分类[J].电工电能新技术,2013,32(4):74-78
[8] 姚建刚,郭知非,陈锦攀.基于小波和BP神经网络的电能扰动分类新方法[J].电网技术,2012,36(5):139-144
[9] 沈跃,刘国海,刘慧.基于改进S变换和贝叶斯相关向量机的电能质量扰动识别[J].控制与决策,2011,26(4):587-591
[10] Bishop C M,Tipping M E.Variational Relevance Vector Machines[R].Uncertainty in Artificial Intelligence Proceedings,2000
[11] 刘志刚,李德仁,秦前清,等.支持向量机在多类分类 问题中的推广[J].计算机工程与应用,2004(7):10-13
[12] Tipping M E,Faul A C.Fast marginal likelihood maximisation for sparse Bayesian models[C]∥Bishop C M.Frey B J.eds.,Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics,Key West,FL,2003

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75, 88 .
[2] 夏庆勋,庄毅. 一种基于局部性原理的远程验证机制[J]. 计算机科学, 2018, 45(4): 148 -151, 162 .
[3] 厉柏伸,李领治,孙涌,朱艳琴. 基于伪梯度提升决策树的内网防御算法[J]. 计算机科学, 2018, 45(4): 157 -162 .
[4] 王欢,张云峰,张艳. 一种基于CFDs规则的修复序列快速判定方法[J]. 计算机科学, 2018, 45(3): 311 -316 .
[5] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[6] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[7] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[8] 刘琴. 计算机取证过程中基于约束的数据质量问题研究[J]. 计算机科学, 2018, 45(4): 169 -172 .
[9] 钟菲,杨斌. 基于主成分分析网络的车牌检测方法[J]. 计算机科学, 2018, 45(3): 268 -273 .
[10] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99, 116 .