计算机科学 ›› 2018, Vol. 45 ›› Issue (4): 215-219.doi: 10.11896/j.issn.1002-137X.2018.04.036
文俊浩,孙光辉,李顺
WEN Jun-hao, SUN Guang-hui and LI Shun
摘要: 随着移动互联网技术的快速发展,越来越多的用户通过移动设备获取移动信息和服务,导致信息过载问题日益凸出。针对目前上下文感知推荐算法中存在的数据稀疏性差、上下文信息融入不够、用户相似性度量被忽略等问题,提出一种基于用户聚类和移动上下文的矩阵分解推荐算法。该算法通过利用k-means对用户聚类找到偏好相似的用户簇,求出每簇中并对 用户所处上下文之间的相似度并对其进行排序,由此找出与目标用户偏好和上下文均相似的用户集合,借助该集合改进传统矩阵分解模型损失函数,并以此为基准进行评分预测和推荐。仿真实验结果表明,所提算法可有效提高预测评分的准确度。
[1] MENG X W,HU X,WANG L C,et al.Mobile Recommender Systems and Their Appliations[J].Journal of Software,2013,24(1):91-108.(in Chinese) 孟祥武,胡勋,王立才,等.移动推荐系统及其应用[J].软件学报,2013,4(1):91-108. [2] WANG Z M,YANG F.An optimized location-based mobile restaurant recommend and navigation system[J].Wseas Transactions on Information Science & Applications,2009,6(5):809-818. [3] GIRARDELLO A,MICHAHELLES F.AppAware:which mobile applications are hot?[C]∥Conference on Human-Compu-ter Interaction with Mobile Devices and Services(Mobile Hci 2010).Lisbon,Portugal,DBLP,2010:431-434. [4] TONG Q L,PARK Y,PARK Y T.A time-based approach to effective recommender systems using implicit feedback[J].Expert Systems with Applications,2008,34(4):3055-3062. [5] SALAKHUTDINOV R,MNIH A.Probabilistic matrix factorization[C]∥International Conference on Machine Learning.2007:880-887. [6] TU D D,SHU C C,YU H Y.Using Unified Probabilistic Matrix Factorization for Contextual Advertisement Recommendation[J].Journal of Software,2013,4(3):454-464.(in Chinese) 涂丹丹,舒承椿,余海燕.基于联合概率矩阵分解的上下文广告推荐算法[J].软件学报,2013,4(3):454-464. [7] SCHILIT B,ADAMS N,WANT R.Context-Aware Computing Applications[C]∥First Workshop on Mobile Computing Systems and Applications.IEEE Computer Society,1994:85-90. [8] ADOMAVICIUS G,TUZHILIN A.Context-aware recommender systems[C]∥ACM Conference on Recommender Systems.ACM,2008:335-336. [9] HAI B Z,XIE R Y.Bayesian Network-based Context-awareRecommendation Algorithm[J].Computer Science,2014,41(7):275-278.(in Chinese) 海本斋,解瑞云.基于贝叶斯网络的上下文推荐算法[J].计算机科学,2014,1(7):275-278. [10] ZHENG Y,MOBASHER B,BURKE R.Incorporating context correlation into context-aware matrix factorization[C]∥International Workshop on Intelligent Personalization.2015:21-27. [11] MA H,ZHOU D,LIU C,et al.Recommender systems with social regularization[C]∥Forth International Conference on Web Search and Web Data Mining(WSDM 2011).Hong Kong,China,DBLP,2011:287-296. [12] DAO T H,JEONG S R,AHN H.A novel recommendation mo-del of location-based advertising:Context-Aware Collaborative Filtering using GA approach[J].Expert Systems with Applications,2012,39(3):3731-3739. [13] LIU R S,YANG T C.Improving Recommendation Accuracy by Considering Electronic Word-of-Mouth and the Effects of Its Propagation Using Collective Matrix Factorization[C]∥IEEE Datacom.IEEE,2016. [14] ZHEN G L,ZHU F X,YAO X.Recommendation Rating Prediction Based on Attribute Boosting with Partial Sampling[J].Chinese Journal of Computers,2016,9(8):1501-1514.(in Chinese) 郑麟,朱福喜,姚杏.基于属性提升与局部采样的推荐评分预测[J].计算机学报,2016,9(8):1501-1514. [15] EL-MOEMEN S A,HASSAN T,SEWISY A A.A Context-Aware Recommender System for Personalized Places in Mobile Applications[J].International Journal of Advanced Computer Science & Applications,2016,7(3):442-448. [16] CHAMPIRI Z D,SHAHAMIRI S R,SALIM S S B.A systema-tic review of scholar context-aware recommender systems[J].Expert Systems with Applications,2015,42(3):1743-1758. |
No related articles found! |
|