计算机科学 ›› 2011, Vol. 38 ›› Issue (10): 236-239.

• 人工智能 • 上一篇    下一篇

基于克隆选择和量子进化的GEP分类算法

王卫红,杜燕烨,李曲   

  1. (浙江工业大学计算机科学与技术学院 杭州310023);(浙江大学计算机学院 杭州310038)
  • 出版日期:2018-11-16 发布日期:2018-11-16

GEP Classification Based on Clonal Selection and Quantum Evolution

WANG Wei-hong,DU Yan ye,LI Qu   

  • Online:2018-11-16 Published:2018-11-16

摘要: 基于基因表达式编程(GEP)的分类算法具有较高的精度,但易陷入局部最优,且搜索时间长。为进一步提高 GEP分类算法的分类能力,提出了基于克隆选择和量子进化的GEP分类算法—C1onalQuantum-GEP。该算法通过 量子种群的更新和探测影响杭体种群的搜索方向和进化能力,并通过记忆池保持最优解,使其具有更好的种群多样 性、更强的全局寻优能力和更快的收敛速度。在几个标准数据集上的实验验证了算法的有效性。与基本的GEP算法 相比,C1onalQuantum-GEP能以较小的种群规模和较少的进化代数获得较理想的分类效果。

关键词: 基因表达式编程(GEP),克隆选择,量子进化,分类

Abstract: Gene Expression Programming based Classification algorithm has shown good classification accuracy,however, it often falls into the local optimums and needs long time searching. In order to further improve the classification power of GEP, clonal selection and quantum evolution were introduced into GEP. A novel approach called C1onalQuantum-GEP was proposed. After affecting the search direction and evolution ability of the antibody population through the updating and exploring of the quantum population, and keeping the best results in the memory pool, this approach gets more pop- ulation diversity, better ability of global optimums searching, and much faster velocity of convergence. Experiments on several benchmark data sets demonstrate the effectiveness and efficiency of this approach. Compared with basic GEP, C1onalQuantum-GEP can achieve better classification results with much smaller scale of the population and much less evolutionary generation.

Key words: Gene expression programming, Clonal selection, Quantum evolution, Classification

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!