计算机科学 ›› 2018, Vol. 45 ›› Issue (8): 94-99.doi: 10.11896/j.issn.1002-137X.2018.08.017

• 网络与通信 • 上一篇    下一篇

SOC水声信道模型及其计算方法研究

吴鹏1, 周杰1,2, 陈姜高路1   

  1. 南京信息工程大学电子与信息工程学院 南京2100441
    日本国立新泻大学工学部 新泻950-21812
  • 收稿日期:2017-09-15 出版日期:2018-08-29 发布日期:2018-08-29
  • 作者简介:吴 鹏(1994-),男,硕士生,主要研究方向为无线通信信号处理、无线传感网,E-mail:wupeng@nuist.edu.cn; 周 杰(1964-),男,教授,博士生导师,主要研究方向为移动通信理论、无线传感网和无线接入网等,E-mail:zhoujienuist@139.com(通信作者); 陈姜高路(1993-),男,硕士生,主要研究方向为无线通信信号处理、无线传感网。
  • 基金资助:
    本文受国家自然科学基金面上项目(61471153,61771248),江苏省高校自然科学基金重大项目(14KJA510001),江苏省信息与通信工程优势学科建设项目资助。

Research on Underwater Acoustic Channel Model and Its Calculation Method Based on SOC

WU Peng1, ZHOU Jie1,2, CHENG Jiang-gao-lu1   

  1. School of Electronics & Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China1
    Deparment of Engineering,Niigata University,Niigata 950-2181,Japan2
  • Received:2017-09-15 Online:2018-08-29 Published:2018-08-29

摘要: 对水下声波通信环境中的无线传播信道直达与非直达环境进行研究,引入几何参考模型,设计出相关模型。假设在三维水下空间的一个二维竖直横截面上均匀分布着数量无限的散射体,文中推导了水声信号到达角的概率密度函数、时间自相关函数以及多普勒功率谱密度的表达式,并分析了其几项主要参数对信道统计特性的影响。文中根据假设的参考模型提出了SOC(Sum of Cisoids) 水声信道模型,以及所需参数的两种有效计算方法,并对二者的性能进行了比较。该研究拓宽了水下无线信道建模的研究方向,并且很大程度地减少了数值计算开支,降低了模型的设计与仿真的复杂度。

关键词: 概率密度函数, 功率谱密度, 几何信道模型, 水声信道, 自相关函数

Abstract: In this paper,the line-of-sight and no-line-of-sight environment of wireless communication channel in underwater acoustic communication environment was studied.A geometric reference model was introduced and related models were designed.Assuming that an unlimited number of scatterers are uniformly distributed on a two-dimensional vertical cross section in 3D underwater space,this paper deduced the signal arriving time probability density function,time autocorrelation function and theexpression of Doppler power spectral density,and analyzed the influence of several main parameters on the channel statistics.According to the assumed reference model,the Sum of Cisoids(SOC) underwater acoustic channel model and two effective calculation methods for the required parameters were proposed,and their performance was compared.The research broadens the research direction of underwater wireless channel modeling,greatly reduces the computational cost,and reduces the complexity of design and simulation of model.

Key words: Autocorrelation function, Geometric channel model, Power spectral density, Probability density function, Underwater acoustic channel

中图分类号: 

  • TN911.6
[1]BAPTISTA A,HOWE B,FREIRE J,et al.Scientific exploration in the era of ocean observatories[J].IEEE Computing in Science Engineering,2008,3(10):53-58.
[2]RASHID M T,ALI A A,ALI R S,et al.Wireless underwater mobile robot system based on ZigBee[C]∥International Conference on Future Communication Networks.2012:117-122.
[3]DALBRO M.Wireless sensor networks for off-shore oil and gas installations[C]∥International Conference on Sensor Technologies & Applications,2008:258-263.
[4]SHIN D,NA S Y,KIM J,et al.Fish robots for water pollution monitoring using ubiquitous sensor networks with sonar localization[M].New York:ICCIT,2007.
[5]NADERI M,PÄTZOLD M,ZAJIC A G.A geometry-basedchannel model for shallow underwater acoustic channels under rough surface and bottom scattering conditions[C]∥IEEE Fifth International Conference on Communications and Electronics,2014(GLOBECOM’01).IEEE,2014:112-117.
[6]NADERI M,PAETZOLD M,HICHERI R,et al.A Geometry-Based Underwater Acoustic Channel Model Allowing for Sloped Ocean Bottom Conditions[J].IEEE Transactions on Wireless Communications,2017,4(16):2394-2408.
[7]GUTIERREZ C A,PATZOLD M.The Design of Sum-of-Cisoids Rayleigh Fading Channel Simulators Assuming Non-Isotropic Scattering Conditions[J].IEEE Transactions on Wireless Communications,2010,9(4):1308-1314.
[8]BEYGI S,STROM E G,MITRA U.Geometry-based stochastic modeling and estimation of vehicle to vehicle channels[C]∥Speech and Signal Processing,2014.IEEE International Confe-rence on Acoustics,2014,1:4289-4293.
[9]QIANG Z L,ZHU F L.Modeling and Simulation on Underwater Acoustic Communication Channel[J].Computer Knowledge and Technology,2013,9(1):140-145.
[10]YING L,HUA Z X.Modeling and simulation on shallow water acoustic multipath channels[J].Ship Science and Technology,2010,32(9):120-124.
[11]CHITRE M.A high-frequency warm shallow water acousticcommunications channel model and measurements[J].Journal of the Acoustical Society of America,2007,122(5):2580-2586.
[12]BREKHOVSKIKH L M,LYSANOV Y P.Fundamentals ofOcean Acoustics[M].New York:Springer,2002.
[13]RADOSEVIC A,AHMED R.Adaptive OFDM Modulation forUnderwater Acoustic Communications:Design Considerations and Experimental Results.IEEE Journal of Oceanic Engineering,2014,39(2):357-370.
[14]DOMINGO M C.Overview of channel models for underwater wireless communication networks.Physical Communication,2008,1(3):163-182.
[15]ZAJIC A G.Statistical Modeling of MIMO Mobile-to-MobileUnderwater Channels.IEEE Transactions on Vehicular Technology,2011,60(4):1337-1351.
[16]MA Y,PÄTZOLD M.2007 International Symposium on Wireless Personal Multimedia Communications Jaipur[C]∥IEEE International Conference on Acoustics Speech and Signal Proces-sing.2007.
[17]SKLAR B.Digital communications[M].NJ:Prentice Hall,2001.
[18]MOLISCH A F,WIN M Z.MIMO systems with antenna selection.IEEE Microwave Magazine,2004,5(1):46-56.
[19]TEAL P,ABHAYAPALA T,KENNEDY R.Spatial correlation in non-isotropic scattering scenarios∥IEEE International Conference on Acoustics.Orlando:IEEE,2002:III-2833-III-2836.
[20]CHO Y,LEE J H.Effect of fading correlation on the SER performance of M-ary PSK with maximal ratio combining.IEEE Communications Letters,2002,3(7):199-201.
[21]LOYKA S L.Channel capacity of MIMO architecture using the exponential correlation matrix.Communications Letters IEEE,2001,5(9):369-371.
[22]TSAI J,WOERNER B.The fading correlation function of a circular antenna array in mobile radio environment.Communications Letters IEEE,2002,6(5):178-180.
[23]ZHOU Z,ISHIZAWA K,KIKUCHI H,et al.Generalized spatial correlation equations for antenna arrays in wireless diversity reception exact and approximate analyses[C]∥Proceedings of the 2003 International Conference on Neural Networks and Signal Processing,2003.IEEE,2003:180-184.
[24]RADOSEVIC A,PROAKIS J G,STOJANOVIC M.Statisticalcharacterization and capacity of shallow water acoustic channels.Bermen:OCEANS 2009-EUROPE,2009.
[25]BOUVET P J,LOUSSERT A.Capacity analysis of underwater acoustic MIMO communications.Sydney:Oceans,2010.
[26]HICHERI R,PATZOLD M,TALHA B.A study on the distribution of the envelope and the capacity of underwater acoustic channels.IEEE International Conference on Communication system,2015,5(1):394-399.
[27]GUTIERREZ C A,PATZOLD M.Sum-of-Sinusoids-Based Simulation of Flat Fading Wireless Propagation Channels Under Non-Isotropic Scattering Conditions∥IEEE Globecom Global Telecommunications Conference.Washington:IEEE,2007:3842-3846.
[28]GUTIÉRREZ C A,PÄTZOLD M.A generalized method for the design of ergodic sum-of-cisoids simulators for multiple uncorrelated rayleigh fading channels∥International Conference on Signal Processing & Communication System.Gold Coast:IEEE,2011:1-10.
[29]PÄTZOLD M.Mobile Fading Channels.NewYork:JohnWiley & Sons,2003.
[30]ZAJIC A G,STUBER G L.Three-Dimensional Modeling, Simulation, and Capacity Analysis of Space-Time Correlated Mobile-to-Mobile Channels.IEEE Transactions on Vehicular Technology,2008,57(4):2042-2054.
[31]MILLER I.Probability,Random Variables,and StochasticProcesses.Physics Today,1967,20(1):135-135.
[32]PÄTZOLD M,TALHA B.On the statistical properties of mobile to mobile fading channels in cooperative networks under line of sight conditions∥2007 Wireless Personal Communication.2007.
[33]ZHOU J,WANG Y L,KIKUCHI H.Doppler power spectrum density and multi-antenna system performance in three-dimensional environment.Acta Physica Sinica,2014,63(24):240507.
[1] 梁珍珍, 徐明.
基于海洋水声信道的密钥协商方案
Key Agreement Scheme Based on Ocean Acoustic Channel
计算机科学, 2022, 49(6): 356-362. https://doi.org/10.11896/jsjkx.210400097
[2] 李豪,崔新凯,高向川.
大规模MIMO室外无线光通信系统中基于分段高斯近似的最大似然盲检测算法
Maximum Likelihood Blind Detection Algorithm Based on Piecewise Gaussian Approximation for Massive MIMO Outdoor Wireless Optical Communication Systems
计算机科学, 2020, 47(3): 255-260. https://doi.org/10.11896/jsjkx.190200310
[3] 何明星, 周杰, 吴鹏, 刘杨.
山洞环境中声信号的传播模型及其性能研究
Acoustic Signal Propagation Model and Its Performance in Cave Environment
计算机科学, 2019, 46(9): 113-119. https://doi.org/10.11896/j.issn.1002-137X.2019.09.015
[4] 李键红,吕巨建,吴亚榕.
基于最大化自相似性先验的盲单帧图像超分辨率算法
Blind Single Image Super-resolution Using Maximizing Self-similarity Prior
计算机科学, 2018, 45(2): 147-151. https://doi.org/10.11896/j.issn.1002-137X.2018.02.026
[5] 胡志军, 刘广海, 苏又.
局部自相关函数在基于内容的图像检索中的应用
Application of Local Autocorrelation Function in Content-based Image Retrieval
计算机科学, 2018, 45(11A): 259-262.
[6] 陈雯雯,王亚林,周杰.
三维统计信道中的多普勒效应及其信号分析
Doppler Effect and Analysis of Signals in Three-dimensional Channel Model
计算机科学, 2017, 44(3): 84-88. https://doi.org/10.11896/j.issn.1002-137X.2017.03.020
[7] .
一种新的超宽带脉冲信号优化设计方法

计算机科学, 2008, 35(10): 143-144.
[8] .
具有低相关值的新的修改的二元Jacobi序列

计算机科学, 2007, 34(3): 17-19.
[9] .
具有多峰正态分布属性的视频语义分类研究

计算机科学, 2006, 33(4): 111-114.
[10] .
调度算法在节点延时PMF正态化条件下的延时分析

计算机科学, 2005, 32(9): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!