计算机科学 ›› 2011, Vol. 38 ›› Issue (5): 227-230.

• 人工智能 • 上一篇    下一篇

基于二进制交叉和变异的粒子群算法及应用

刘衍民,牛奔,赵庆祯   

  1. (遵义师范学院数学系 遵义563002) (山东师范大学管理与经济学院 济南250014) (深圳大学管理学院 深圳518060)
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家863项目(2008AA04A105)和贵州教育厅社科项目(0705204)资助。

Particle Swarm Optimizer with Simulated Binary Crossover and Polynomial Mutation and its Application

LIU Yan-min,NIU Ben,ZHAO Qing-zhen   

  • Online:2018-11-16 Published:2018-11-16

摘要: 粒子群算法在求解多峰问题时极易陷入局部最优解,提出了基于模拟二进制交叉和多项式变异的粒子群算法(sPDPSO>。在该算法中,为了更好地利用每个粒子的历史信息,引入了外部存档存储每个粒子的最优位置( pbest) ;同时,对外部存档中的pbest进行二进制交叉,而对新产生的全局最优粒子进行多项式变异。基准函数的测试结果显示,SPDPS()算法在求解多峰问题上有一定的优势。在实际应用中,以TSP为研究对象,结果显示SPDPSO算法获得了比其它算法更好的解。

关键词: 粒子群算法,模拟二进制交叉,多项式变异

Abstract: PSO may easily get trapped in a local optimum, when it comes to solving multimodal problems. In view of the default, we presented a variant of particle swarm optimizer(PSO) with simulated binary crossover and polynomial mutation(SPDPSO for short). In SPDPSO, additionally, the external archive was introduced to store the personal best performing particle(pbest) , and simulated binary crossover and polynomial mutation were used to produce new particles. In benchmark function, the results demonstrate good performance of the SPDPSO algorithm in solving complex multimodal problems compared with the other algorithms. In practical application, the experimental results show that the SPDPSO algorithm can achieve better solutions that other PSOs.

Key words: Particle swarm optimizer, Simulated binary crossover, Polynomial mutation

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!