计算机科学 ›› 2012, Vol. 39 ›› Issue (12): 295-299.

• 体系结构 • 上一篇    

一种输入感知的雷达回波快速聚类实现

周伟,安虹,刘谷,李小强,吴石磊   

  1. (中国科学技术大学计算机科学与技术学院 合肥230027) (陆军军官学院计算机教研室 合肥230031)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Input-aware Runtime Scheduling Support for Fast Clustering of Radar Reflectivity Data on GPUs

  • Online:2018-11-16 Published:2018-11-16

摘要: 聚类算法作为数据挖掘中的经典算法,在雷达回波的数据分析中经常被采用。然而对于规模和维度都较大的输入数据集,算法十分耗时。很多研究虽然对聚类算法进行了GPU平台的并行和优化的工作,但都忽略了输入数据集对优化的影响。因此,提出了在GPU/CUDA平台上的一种新颖的雷达快速聚类实现。该实现通过运行时的方式对输入的回波数据进行观察,以获取数据的分布信息,用以指导聚类计算在GPU上执行时的线程块调度。而该运行时模块本身的开销非常小。实验表明,引入这种输入感知的运行时调度支持后,大大削减了GPU的计算负载,获得了相对于一般策略的CUDA实现的20%-40%的性能提升,加强了算法的实时性能。

关键词: 聚类算法,实时性,输入感知,图形处理器,统一计算设备架构

Abstract: As a classic algorithm in data mining, the clustering algorithm is often adopted in analysis of radar reflectivity data. However, it is time-consuming while facing dataset of large scale and high dimension. Recently, several studies have been conducted to make effort in parallclization or optimization of the clustering algorithm on GPUs. Although these studies have shown promising results, one important factor`program inputs-in the optimization is ignored in optimization. We took the program inputs in consider as a factor for optimization of the clustering algorithm on GPUs. By observing the distribution feature of the input radar reflectivity data, we found that the ability to adapt to inputs is important for our application to achieve the best performance on GPUs. The results shows that our approach can gain a 20%一40% performance increment, compared to previous parallel code on GPUs, which makes it satisfies the requirement of real-time application well.

Key words: Clustering algorithm, Real-time, Input aware, GPU, CUDA

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!