计算机科学 ›› 2012, Vol. 39 ›› Issue (10): 152-156.

• 数据库与数据挖掘 • 上一篇    下一篇

基于剪枝的海量数据离群点挖掘

杨茂林,卢炎生   

  1. (华中科技大学计算机科学与技术学院 武汉430074)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Pruning-based Outlier Mining from Large Dataset

  • Online:2018-11-16 Published:2018-11-16

摘要: 基于距离的离群点挖掘通常需要的时间进行大量的距离计算与比较,这限制了其在海量数据上的应用。针对此问题,提出了一个带剪枝功能的离群点挖掘算法。算法分为两步:在对数据集进行一通扫描后,剪枝掉大量的非离群点;然后对余下的可疑数据实施一种改进的嵌套循环算法,以每个数据点与其k个最近部点的平均距离作 为离群度,确定前n个离群点。在真实数据和合成数据集上的实验结果均表明,该算法在获得高命中率的同时仍保持低误警率。与相关算法相比,其具有较低的时间复杂性。

关键词: 离群点,数据挖掘,基于距离

Abstract: Distanccbascd outlicr detection approach typically requires time of distance computation and comparison. This quadratic scaling restricts the ability to apply this approach to large datasets. To overcome this limitation, a novel distance-based outlier mining approach with pruning rules was proposed. The approach consists of two phases.During the first phase, the original input data arc scanned and the majority of non-outlicrs arc pruned. During second phase, an improved nested loops approach is applied to compute the average K-nearest distance which measures the degree of being an outlicr and finally reports the top-n outlicrs. Experiments on both synthetic data and real-life data show hat the proposed approach achieves a high hit rate with a low false alarm rate. Compared with related approaches, theproposed approach has a lower time complexity.

Key words: Outlicr, Data mining, Distanccbascd

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!