摘要: 针对边界Fisher分析(MFA)构建的惩罚图没有充分描述类间数据分离度的缺点,提出一种局部和整体间距嵌入(LGME)特征提取方法。该方法在构建惩罚图时采用了全部的不同类样本数据对,并适当地强调了间距较小的不同类样本数据对的作用。与MF八相比,LGME同时使用类间数据的局部和整体间距信息,对类间数据分离度进行了充分描述,从而使其提取的数据特征具有更强的判别力。实验结果表明,工GME方法提取的人脸图像特征在用于人脸识别时,具有较高的识别率,且更具鲁棒性。
No related articles found! |
|