计算机科学 ›› 2012, Vol. 39 ›› Issue (9): 275-278.

• 图形图像 • 上一篇    下一篇

一种人脸图像特征提取的局部和整体间距嵌入方法

杜海顺,李玉玲,侯彦东,金勇   

  1. (河南大学图像处理与模式识别研究所 开封475004)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Local and Global Margin Embedding Method for Feature Extraction of Face Image

  • Online:2018-11-16 Published:2018-11-16

摘要: 针对边界Fisher分析(MFA)构建的惩罚图没有充分描述类间数据分离度的缺点,提出一种局部和整体间距嵌入(LGME)特征提取方法。该方法在构建惩罚图时采用了全部的不同类样本数据对,并适当地强调了间距较小的不同类样本数据对的作用。与MF八相比,LGME同时使用类间数据的局部和整体间距信息,对类间数据分离度进行了充分描述,从而使其提取的数据特征具有更强的判别力。实验结果表明,工GME方法提取的人脸图像特征在用于人脸识别时,具有较高的识别率,且更具鲁棒性。

关键词: 人脸识别,特征提取,边界Fishcr分析(MFA),局部和整体间距嵌入(LGME)

Abstract: To overcome the disadvantage that the penalty graph constructed by marginal Fisher analysis (MFA) can't sufficiently describe interclass separabihty, this paper proposed a novel feature extraction method, called local and global margin embedding (LGME). In LGME, all interclass data pairs are used to construct penalty graph, whereas the importance of limited interclass data pairs with minimal margins is emphasized properly. Compared with MFA, I_GME simultaneity uses local and global interclass margin to characterize interclass separability, so the data features extracted by LGME have more discriminative power. hhe experimental results show that the face image features extracted by LGME for face recognition have higher recognition rate and more robust.

Key words: Face recognition, Feature extraction, Marginal Fisher analysis (MFA),Local and global margin embedding(LGME)

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!