计算机科学 ›› 2012, Vol. 39 ›› Issue (9): 229-234.

• 人工智能 • 上一篇    下一篇

核协方差成分分析方法及其在聚类中的应用

闫晓波,王士同,郭慧玲   

  1. (江南大学数字媒体学院 无锡214122)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Kernel Covariance Component Analysis and its Application in Clustering

  • Online:2018-11-16 Published:2018-11-16

摘要: 以降维前后密度总和与Renyi嫡的差(Dcnsities-vs Entropy,D-vs-E)尽量靠近为准则,得到了一种新的特征降维方法,而D-vs-E是由核特征空间的协方差矩阵导出的,因此称为核协方差成分分析(Kernel Covariance Component Analysis , KCCA)。将Dvs-E发展为广义D-vs-E(generalized D-vs-E).KCCA通过将数据投影在使D-vs-E最大的KPCA轴方向得到转换后的低维数据,但是所选取的KPCA轴不一定对应于核矩阵最大的几个特征值。与基于Renyi嫡的KECA相比,KCCA是基于D-vs-E的。基于广义D-vs-E的KCCA数据转换方法应用于聚类的结果显示,它在对高斯核参数的选择上具有更强的鲁棒性。

关键词: 核嫡成分分析,核协方差成分分析,聚类,协方差矩阵,高斯核参数,雷尼墒

Abstract: A new feature dimensionahty reduction method called kernel covariance component analysis (KCCA) was put forward on the criterion that the transformed data best preserves the concept of the difference (denoted as D-vs-E) betwecn total densities and Renyi entropy of the input data space, induced from kernel covariance matrix. The generalized version of D-vs-E was also developed here. KCCA achieves its goal by projections onto a subset of D-vs-E preserving kernel principal component analysis (KPCA) axes and this subset does not generally need to correspond to the top eigenvalues of the corresponding kernel matrix, in contrast to KPCA. However, KCCA is rooted at the new concept of D-vs-E rather than Renyi entropy. Experimental results also show that KCCA is more robust to the choice of Gaussian kernel bandwidth when it is used in clustering.

Key words: KECA, KCCA, Clustering, Covariance matrix, Gaussian kernel bandwidth, Renyi entropy

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!