摘要: 以降维前后密度总和与Renyi嫡的差(Dcnsities-vs Entropy,D-vs-E)尽量靠近为准则,得到了一种新的特征降维方法,而D-vs-E是由核特征空间的协方差矩阵导出的,因此称为核协方差成分分析(Kernel Covariance Component Analysis , KCCA)。将Dvs-E发展为广义D-vs-E(generalized D-vs-E).KCCA通过将数据投影在使D-vs-E最大的KPCA轴方向得到转换后的低维数据,但是所选取的KPCA轴不一定对应于核矩阵最大的几个特征值。与基于Renyi嫡的KECA相比,KCCA是基于D-vs-E的。基于广义D-vs-E的KCCA数据转换方法应用于聚类的结果显示,它在对高斯核参数的选择上具有更强的鲁棒性。
No related articles found! |
|