计算机科学 ›› 2012, Vol. 39 ›› Issue (9): 166-169.

• 数据库与数据挖掘 • 上一篇    下一篇

基于粒子群优化的模糊C一均值聚类算法研究

王纵虎,刘志镜,陈东辉   

  1. (西安电子科技大学计算机学院 西安710071)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Research of PSO-based Fuzzy C-means Clustering Algorithm

  • Online:2018-11-16 Published:2018-11-16

摘要: 针对用模糊G均值聚类算法选择初始聚类中心敏感及模糊加权指数。对模糊G均值聚类算法的聚类性能 影响较大等问题,利用粒子群优化算法的全局寻优能力强及收敛速度较快的特点,结合模糊G均值算法提出一种新 的模糊聚类算法;采用了一种简单有效的粒子编码方法,将初始聚类中心和模糊加权指数二同时进行粒子群优化搜 索,在得到最优适应度的同时,二也收敛到一个稳定的最优解,从而有效地解决了上述问题。算法在人工合成数据集 和多个UCI数据集上都取得了较好的效果。

关键词: 聚类,模糊G均值聚类,粒子群优化,粒子编码,初始聚类中心

Abstract: Fuzzy C-mean algorithm is sensitive to initial centroid and the choice of fuzzy weighting exponent m plays an import role in clustering result PSO has the advantage of global optimization and good convergence speed. This paper proposed a new method by combining PSO and fuzzy GMeans to solve those problem. I3y a simple and effective particle encoding method, the best initial centroid and fuzzy weighting exponent were both searched in the process of PSO. Ex- periments on synthetic data sets and several UCI data sets achieve good results.

Key words: Clustering, FCM, PSO, Particle coding, Initial centroid

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!