计算机科学 ›› 2012, Vol. 39 ›› Issue (8): 278-280.

• 图形图像 • 上一篇    下一篇

一种改进的拉普拉斯水平集医学图像分割算法

王 欣,薛 龙,张明明   

  1. (北京理工大学光电学院光电成像技术与系统教育部重点实验室 北京100081);(华北科技学院计算机系 三河065201)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Improved Medical Image Segmentation Algorithm Based on Laplacian Level Set

  • Online:2018-11-16 Published:2018-11-16

摘要: 作为图像识别与图像理解的关键步骤,图像分割一直受到人们的重视,很多相应的算法被提出,但它也面临着很多挑战。医学图像分割的难点是对模糊边缘的连续有效分割,为准确的目标提取提供保障。提出一种新的医学图像分割算法,算法在拉普拉斯水平集图像分割算法基础上,融入图像的区域信息,重新定义了驱动水平集表面演化的速度函数。算法除了利用图像的边缘梯度信息外,还充分融合了图像的区域信息,从而在保持图像边缘局部特征的同时,充分利用了区域全局优化的特点,可实现医学图像的有效分割。与经典水平集分割方法相比,改进后的方法能够更好地保持边界的连续性,得到比较完整的分割结果,为图像分析提供可靠的科学数据。

关键词: 医学图像分割,拉普拉斯算子,水平集,速度函数

Abstract: Being a key procedure of image recognition and image understanding, image segmentation, on one hand, is regarded as being of important potential value, hence a lot of algorithms have been proposed, on the other hand, it has encountered a lot of challenges. Among all these challenges, one of them is how to acquire continuous segmentation result from blurring region. A new medical image segmentation algorithm based on the Lapalacian level set was proposed, and this algorithm combines regional information into speed function to drive the evolution of level set surface. The algorithm utilizes not only the information of image edges and gradient information, but also image region information. The algorithm takes advantage of regional global optimization features meanwhile maintaining the local features of edges.The new proposed algorithm implements effective segmentation of medical images. Compared with the classical level set segmentation methods, the improved algorithm has good performance in maintaining the continuity of the edges, so that the segmentation result is relatively complete. This algorithm can provide reliable scientific data for image analysis.

Key words: Medical image segmentation, Laplacian operator, Level set, Speed function

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!