计算机科学 ›› 2012, Vol. 39 ›› Issue (Z11): 249-251.
• 数据库与数据挖掘 • 上一篇 下一篇
张佩炯,苏宏升
出版日期:
发布日期:
Online:
Published:
摘要: 针对基于云数字特征(期望值、嫡值、超嫡值)编码的云粒子群算法应用中优化效率低和局部寻优能力较差的问题,提出了两点改进措施:在解空间变换的基础上将局部搜索与全局搜索相结合;依据正态云算子实现粒子的进化学习过程和变异操作。将改进算法应用于多变量函数极值优化问题。仿真结果表明,该改进算法寻优代数小、收敛速度快、效率高,并且具有较好的种群多样性,验证了改进措施的有效性。
关键词: 云模型,优化算法,云粒子群算法,函数优化
Abstract: In order to solve the problems of optimization efficiency and inferior local search of cloud particle swarm algorithm which is based on cloud digital features (Ex, En, He) , this paper proposes two improvements, combines local search with global search which is based on the solution space transform, and achieves the evolution of the learning process and the variation operation according to the normal cloud particle. The improved algorithm is used to the function extreme optimization of muti-variables. Simulation results show that the improved algorithm has lower generation,higher efficiency, diverse population, and it proves that the improvement is efficient.
Key words: Cloud model, Optimization algorithm, Cloud particle swarm algorithm, Function optimization
张佩炯,苏宏升. 一种改进的云粒子群算法及其应用研究[J]. 计算机科学, 2012, 39(Z11): 249-251. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2012/V39/IZ11/249
Cited