计算机科学 ›› 2012, Vol. 39 ›› Issue (Z11): 45-50.

• 综述 • 上一篇    下一篇

一种面向新型入侵的获取和分类方法

王飞 周鹏程 王雷 徐本连   

  1. (常熟理工学院电气与自动化工程学院 常熟 215500)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Method for Capture and Classification of New Intrusions

  • Online:2018-11-16 Published:2018-11-16

摘要: 针对网络异常检测方法难以对新型入侵提供更多有用信息的缺点,提出一种面向新型入侵的获取和分类方 法。首先,为了改善整体检测性能,提出一种改进的特征提取算法并将其与两种特征提取方法共同构成特征集成方法 进行异常检测以捕获入侵。然后通过一种匹配过滤机制筛除已知入侵,最后将获取的新型入侵作为聚类模块的输入,通 过聚类及提出的类别获取算法对新型入侵做进一步分类匹配,从而获得其类别信息。最后,采用KDI}UP99数据集进 行实验仿真,结果表明该检测方法具有较好的检测率和较低的误报率,并且该方法对于识别并分类新型入侵是有效的。

关键词: 特征提取,集成分类,支持向量机,自组织映射,异常检测,信息获取

Abstract: As less useful information for new intrusions could be obtained by anomaly detection, a method for capture and classification of new intrusion is proposed. First, in order to improve the performance of the system, an improved al- gorithm for feature extraction is proposed and combining with the other two methods a feature integration system is built to capture anomalous connections. Second, patterns matching plays a role of filtering out the known intrusions, and the remaining new intrusions is as the input to clustering module, through which further classification is carried out, af- ter that the valid information about its class is obtained. Finally, the results of experiment simulation using data set KID D(}UP99 show that the detection method has better detection rate and low false alarm rate, and the method to identify and classify the new intrusions is valid.

Key words: Feature extraction, Ensemble classification, Support vector machine (SVM),Self-organizing map (SOM),Anomaly detection, Information acquisition

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!