计算机科学 ›› 2012, Vol. 39 ›› Issue (Z6): 245-248.

• • 上一篇    下一篇

基于离散量子粒子群的信任增值服务工作流选择方法

黄德才,陈姜倩   

  1. (浙江工业大学计算机科学与技术学院 杭州 310023)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Trust Value-added Service Selection Algorithm of Workflow Based on Discrete

  • Online:2018-11-16 Published:2018-11-16

摘要: 随着面向服务计算技术的发展,用户提出的任务趋于复杂化,如何高效地把现存的各种组件服务整合起来形成新的满足复杂任务需求的增值服务即组合服务,已成为研究的热点。针对这种增值服务的服务选择问题,设计了一种信任增值离散量子粒子群算法。该算法与传统的面向QoS全局最优的服务选择算法的区别在于,前者不仅考虑了服务的信任问题,有效地解决了服务工作流中的恶意欺骗问题,同时还结合工作流的特点,将量子粒子群算法离散化,根据服务选择应用场景重新定义了量子粒子群算法中各种位置的计算方法和其中权重系数的自动调整。仿真实验结果表明,该离散量子粒子群算法不仅降低了服务选择的时间,且能得到更优的适应度值,同时还考虑了信任问题,提高了服务选择的成功率。

关键词: 组合服务,服务选择,量子粒子群算法,离散量子粒子群算法,信任增值

Abstract: With the development of scrviccoriented computing, the users' tasks become more and more complicated.Thus,how to integrate all existing component services effectively to form a new valu}added services,as same as composite scrvice,which can content complex tasks has become a top research. Based on these service selection problems of valued-added services, this paper designs a discrete quantum particle swarm algorithm for enhancing trust, Comparing with traditional service selection algorithm, which is Qos-oriented for global optimization, this algorithm consider the issue of trust services which can solve the issue of trust in service workflow. At the same time, this algorithm disperses quantum particle swarm with the features of workflow. It redefines the computed methods of various locations and the auto-rcgulation of weight coefficient in quantum particle swarm algorithm according to the scenarios of service selcction. Compared with other similar research work, the time of service selection is reduced and a better fitness value can be got by this method. Simultaneously, the success rate of service selection is raised because of considering the issue of trust.

Key words: Composite service, Service selection, Quantum particle swarm, Discrete quantum particle swarm optimiza- tion,Trust valu}added

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!