计算机科学 ›› 2012, Vol. 39 ›› Issue (Z6): 99-102.
• • 上一篇 下一篇
郭陶,张琨,郭文娟,庄克琛,贺定龙,李配配
出版日期:
发布日期:
Online:
Published:
摘要: 在复杂网络聚类中,为了克服聚类结果局部收敛和对多维数据聚类效果差的缺点,通过对复杂网络聚类方法 的应用分析,将NJ W算法和粒子群聚类算法应用到加权复杂网络簇结构的探测中,设计和实现了一种改进的加权复 杂网络聚类方法。实验验证了该方法在簇结构较复杂的网络中具有较高的执行效率和较好的执行效果。
关键词: 复杂网络,聚类算法,网络簇结构,NJ W算法,PSO聚类
Abstract: In order to overcome the shortcomings of the local convergence and poor results for multidimensional data clustering in complex networks clustering, by applying and analyzing complex networks clustering method, applied NJW algorithm and PSO clustering algorithm to the detection of the cluster structure of the complex networks, so designed and implemented an improved method of weighted complex networks clustering. Experiment demonstrates that the pro- posed method has high efficiency and good result in the implementation of larger and structure of more complex net- works.
Key words: Complex networks,Clustering algorithm,Cluster structure of networks,NJW algorithm, PSO clustering
郭陶,张琨,郭文娟,庄克琛,贺定龙,李配配. 一种改进的加权复杂网络聚类方法[J]. 计算机科学, 2012, 39(Z6): 99-102. https://doi.org/
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://www.jsjkx.com/CN/
https://www.jsjkx.com/CN/Y2012/V39/IZ6/99
Cited