计算机科学 ›› 2013, Vol. 40 ›› Issue (10): 243-247.

• 人工智能 • 上一篇    下一篇

一种优化的语义条件模糊聚类

李洪波,李仁璞,张志旺,周春姐   

  1. 鲁东大学信息与电气工程学院 烟台264025;鲁东大学信息与电气工程学院 烟台264025;鲁东大学信息与电气工程学院 烟台264025;鲁东大学信息与电气工程学院 烟台264025
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受山东省自然科学基金面上项目(ZR2010GM013)资助

Optimized Semantic Conditioned Fuzzy C-Means

LI Hong-bo,LI Ren-pu,ZHANG Zhi-wang and ZHOU Chun-jie   

  • Online:2018-11-16 Published:2018-11-16

摘要: 在条件模糊聚类的基础上,提出利用公理化模糊集的成员隶属度函数量化用户语义、确定外部条件的方法。引入调节因子新概念,以调节基于语义的成员隶属度和基于欧拉距离的模糊隶属度对聚类结果的影响,并最终建立了语义条件聚类和经典模糊聚类的统一框架。给出了语义聚类的评价指标——语义强度期望,以找到距离目标语义最近的聚类。为使条件模糊聚类的聚类准确性更高,对原始数据进行了谱变换,尔后进行语义条件聚类。利用Iris数据集,对标准模糊聚类、语义条件聚类和语义条件聚类的谱优化3个算法进行了多指标综合实验比较。实验结果表明,语义条件聚类能够发现最贴近用户给出的语义的聚类。

关键词: 条件聚类,公理化模糊集,成员隶属度函数,调节因子,语义强度期望

Abstract: On the basis of Conditioned Fuzzy C-Means,it was proposed that a foreign condition is determined by a computational user semantic.The user semantic was computed by the membership function based Axiomatic Fuzzy Sets.Further,a new concept,Adjusted Factor,was introduced to adjust the impact of the membership based on semantic and that one based on Euclidean Distance on clustering results,and one uniformed coherence framework of Fuzzy C-Means and Conditioned Fuzzy C-Means was built up.In addition,Semantic Strength Expectation was brought forward in order to assess the clustering quality.Furthermore,in order to raise the clustering accuracy,Semantic Conditioned Fuzzy C-Means was processed after the raw data was transformed into spectral data.Finally,based on multiple assessment indexes,FCM,Semantic Conditioned Fuzzy C-Means and its Spectral Optimization were tested on Iris data set.Experiment results show that the cluster that is closest to user semantic is able to be found by Semantic Conditioned Fuzzy C-Means.

Key words: Conditional clustering,Axiomatic fuzzy sets,Coherence membership function,Adjusted factor,Semantic strength expectation

[1] 孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,9(1):48-61
[2] Jain A,Murty M,Flynn P.Data clustering:a review[J].ACM Computing Surveys,1999,31(3):264-323
[3] Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum,1981:52-103
[4] Leski J M.Generalized weighted conditional fuzzy clustering[J].IEEE Trans.On Fuzzy Systems,2003,11(6):709-715
[5] Pedrycz W.Conditional Fuzzy C-Means[J].Pattern Recognition Letters,1996,17:625-632
[6] Liu X D,Pedrycz W.Axiomatic Fuzzy Set Theory and Its Appli-cations[J].Springer-Verlag Berlin Heidelberg,2009(4):111-166
[7] Zadeh L A.Fuzzy Sets[J].Information And Control,1965(8):338-353
[8] 蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008(07):14-18
[9] Guo C,Zhao H.Community structure discovery method basedon the Gaussian kernel similarity matrix[J].Physica A:Statistional Mechonics and its Applications,2012,1(6):2268-2278
[10] 郭崇慧,苏木亚.基于独立成分分析的时间序列谱聚类方法[J].系统工程理论与实践,2011,31(10):1921-1931
[11] 李洪波.基于减法聚类和快速紧密性函数的SF-FCM[J].控制与决策,2011,26(7):1074-1078

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!