摘要: 交互式图像分割方法对边界模糊的医学图像进行分割时通常需要用户标记较多的初始种子或进行二次交互,这给用户带来不便。针对此问题,提出一种简化标记的多阈值优化交互式分割算法,该算法在GrowCut交互式算法基础上通过引入图像灰度直方图的多个阈值自动生成初始种子模板,并利用改进的细胞自动机迭代算法实现图像分割。算法简化了用户操作,提高了分割精度。算法应用于临床肝脏图像和牙菌斑图像分割,显示了良好的分割效果。
[1] Mortensen E N,Barrett W A.Interactive segmentation with intelligent scissors[J].Graphical Models and Image Processing,1998,60(5):349-384 [2] Kass M,Witkin A,Terzopoulous D.Snakes:Active contourmodels[J].Intemational Journal of Computer Vision,1988,1(4):321-331 [3] Osher S,Fedkiw R.Level Set Methods and Dynamic ImplicitSurfaces[M].Springer-Verlag,New York,2002 [4] Li Yin,Sun Jian,Tang C K,et al.Lazy Snapping[J].ACMTransaction on Graphics,2004,24(3):303-308 [5] Boykov Y,Jolly M P.Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images[C]∥IEEE International Conference on Computer Vision.2001:102-115 [6] Rother C,Kolmogorov V,Blake A.Grabcut-Interaetive Fore-ground Extraction using Iterated Graph Cuts[J].ACM Transa-ction on Graphics,2004,4(3):309-314 [7] Von Neumann J.Theory of Self-Reproducing Automata[M].Theory of Self-Reproducing Automate,1966 [8] Thomas C D.Evolution of Cellular Automata for Image Proces-sing[D].University of Birmingham,April 2000 [9] Vezhnevets V,Konouchine V.GrowCut-interactive muti-labelND image segmentation by cellar automata[C]∥Proceeding of Graphicon.2006:231-234 |
No related articles found! |
|