计算机科学 ›› 2013, Vol. 40 ›› Issue (9): 296-299.

• 图形图像与模式识别 • 上一篇    下一篇

多阈值优化的交互式医学图像分割方法

兰红   

  1. 江西理工大学信息工程学院 赣州341000
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受江西省教育厅科技项目(GJJ11465)资助

Interactive Medical Image Segmentation Algorithm Optimized by Multi-thresholds

LAN Hong   

  • Online:2018-11-16 Published:2018-11-16

摘要: 交互式图像分割方法对边界模糊的医学图像进行分割时通常需要用户标记较多的初始种子或进行二次交互,这给用户带来不便。针对此问题,提出一种简化标记的多阈值优化交互式分割算法,该算法在GrowCut交互式算法基础上通过引入图像灰度直方图的多个阈值自动生成初始种子模板,并利用改进的细胞自动机迭代算法实现图像分割。算法简化了用户操作,提高了分割精度。算法应用于临床肝脏图像和牙菌斑图像分割,显示了良好的分割效果。

关键词: 交互式,多阈值,灰度直方图,细胞自动机,医学图像分割 中图法分类号TP391文献标识码A

Abstract: Interactive image segmentation methods usually require users to provide much more initial seeds or more than once interactive when they are used for medical image segmentation with fuzzy boundaries.This paper presented an optimized interactive image segmentation algorithm with multi-thresholds technology.The proposed algorithm is based on GorwCut algorithm and improved in two aspects:one is automatically generating initial seeds templates by image gray histogram with multi-thresholds,and the other is raising iterative efficiency by improved cellular automaton iterative algorithm.Compared with GrowCut algorithm,the proposed algorithm simplifies the user interactive operations and improves the segmentation accuracy.Experimental results on clinical plaque and liver image segmentations demostrate the sound performances of the proposed algorithm.

Key words: Interactive,Multi-thresholds,Histogram,Cellular automata,Medical image segmentation

[1] Mortensen E N,Barrett W A.Interactive segmentation with intelligent scissors[J].Graphical Models and Image Processing,1998,60(5):349-384
[2] Kass M,Witkin A,Terzopoulous D.Snakes:Active contourmodels[J].Intemational Journal of Computer Vision,1988,1(4):321-331
[3] Osher S,Fedkiw R.Level Set Methods and Dynamic ImplicitSurfaces[M].Springer-Verlag,New York,2002
[4] Li Yin,Sun Jian,Tang C K,et al.Lazy Snapping[J].ACMTransaction on Graphics,2004,24(3):303-308
[5] Boykov Y,Jolly M P.Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images[C]∥IEEE International Conference on Computer Vision.2001:102-115
[6] Rother C,Kolmogorov V,Blake A.Grabcut-Interaetive Fore-ground Extraction using Iterated Graph Cuts[J].ACM Transa-ction on Graphics,2004,4(3):309-314
[7] Von Neumann J.Theory of Self-Reproducing Automata[M].Theory of Self-Reproducing Automate,1966
[8] Thomas C D.Evolution of Cellular Automata for Image Proces-sing[D].University of Birmingham,April 2000
[9] Vezhnevets V,Konouchine V.GrowCut-interactive muti-labelND image segmentation by cellar automata[C]∥Proceeding of Graphicon.2006:231-234

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!