计算机科学 ›› 2013, Vol. 40 ›› Issue (6): 288-290.

• 图形图像与模式识别 • 上一篇    下一篇

基于梯度增强扩散的高速路裂纹图像去噪算法

张永强   

  1. 河南财经政法大学计算机与信息工程学院 郑州450002
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受河南省科技厅重点科技攻关项目(112102210199)资助

Algorithm for Pavement Distress Image Denoising Based on Gradient Enhanced Diffusion

ZHANG Yong-qiang   

  • Online:2018-11-16 Published:2018-11-16

摘要: 针对高速公路路面病害裂纹自动检测问题,采用高速CCD相机对路面进行成像,并通过图像分析的方法来自动完成路面病害裂纹的检测。由于路面含有油渍、杂质等负信息的干扰,因此需要对路面裂纹图像进行去噪。传统图像去噪算法一般采用全局滤波的方式,这就会破坏图像中裂纹的边缘纹理特征。为解决这一现实难题,提出了一种基于梯度增强扩散的路面裂纹图像的去噪算法。算法主要针对含有裂纹结构的路面图像,在基于偏微分扩散方程的去噪过程中引入了裂纹结构分析,并根据裂纹局部梯度变化,重新定义了扩散系数,以在有效增强路面裂纹边缘特征的同时去除图像中的小尺度噪声。仿真实验表明,与传统的全局平滑滤波以及中值滤波相比,这一算法对裂纹纹理图像的去噪具有很好的效果,表现出一定的实际工程应用价值。

关键词: 图像去噪,梯度增强,偏微分扩散方程,路面裂纹

Abstract: The pavement distress auto detection with rapid CCD camera suffers from the complicated pavement’s background which contains greasy dirt and inclusion.The traditional image denoising algorithm suffers from the edge and texture features’ losing which seriously interrupts the reliability of the detection system.In order to overcome this problem,an algorithm for image denoising with line-type texture based on gradient enhanced diffusion was proposed.Taking account of the character of image which includes line-type texture,the structure of texture can be imported into denoising.According to the local change of gradient,the diffusion factor was defined afresh.The simulated experiment results demonstrate that the method has the superiority and staility with the line-type texture image denoising.

Key words: Image denoising,Gradient enhanced,Partial differential equations diffusion,Pavement distress

[1] 陈华丽,刘康,程耕国.信号自适应去噪方法的仿真研究[J].计算机仿真,2011,28(1):344-348
[2] 熊保平,杜民.基于PDE图像去噪方法[J].计算机应用,2007,7(8):2025-2029
[3] Zhao X L,Bo L G.New numerical algorithms for the nonlinear diffusion of image denoising and segmentation[J].Applied Mathematics and Computation,2006,178:380-389
[4] Perona P,Malik J.Scale-Space and Edge Detection Using Anisotropic Diffusion[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1990,12(7):629-639
[5] Weickert J.Coherence enhancing diffusion filtering[J].International Journal of computer Vision,1999,31(2/3):111-127
[6] Osher S,Rudin L I.Feature-oriented image enhancement using shock filters.SIAM Journal on Numerical Analysis,1990(27):919-940
[7] 谢华英,周海银.P-M扩散与相干增强扩散相结合的抑制噪声方法[J].中国图像图形学报,2005,10(2):158-163
[8] 唐磊.基于图像分析的路面病害自动检测[D].南京:南京理工大学,2007,4:3-4
[9] 贾瑞芝,任丽莎,刘瑞华.纹理保持的图像去噪[J].重庆理工大学学报:自然科学版,2011,25(11):63-66

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!