计算机科学 ›› 2013, Vol. 40 ›› Issue (5): 11-18.

• 综述 • 上一篇    下一篇

基于零空间分析的张量局部Fisher判别方法

郑建炜,蒋一波,王万良   

  1. 浙江工业大学计算机学院 杭州310023;浙江工业大学计算机学院 杭州310023;浙江工业大学计算机学院 杭州310023
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金(61070043),浙江省自然科学基金(LQ12F03011),浙江工业大学校自然科学基金(2011XY020)资助

Tensor Local Fisher Discriminant with Null Space Analysis

ZHENG Jian-wei,JIANG Yi-bo and WANG Wan-liang   

  • Online:2018-11-16 Published:2018-11-16

摘要: 结合局部Fisher判别、张量子空间学习和零空间分析等技术的优点,提出了一种基于零空间分析的张量局部Fisher判别算法,其特点包括:i) 引入类间判别信息,对局部Fisher判别技术进行调整,提升了算法识别性能并且降低了计算时间复杂度;ii) 通过张量型降维思想对输入样本进行双边投影变换而非单边投影,获得了更高的信息压缩率;iii) 随着训练样本量的变化,可采用基于零空间分析的求解方法和传统的直接迭代更新计算方法。通过ORL、Yale和ExYaleB 3个人脸数据库验证了所提算法的性能。

关键词: Fisher判别分析,零空间,局部保持投影,张量子空间分析

Abstract: The tensor local fisher discriminant algorithm with null space analysis or NSTLFDA for short was proposed which incorporates the merits of three techniques,i.e.,tensor based methods,local Fisher discriminant analysis,and null space analysis.The main features of our implementation include:(i) local Fisher discriminant analysis is improved by inter-class discriminant information for better recognition performance and reduces time complexity.ii) the tensor based method employs two-sided transformations rather than single-sided one,and yields higher compression ratio.iii) while TLFDA directly uses an iterative procedure to calculate the optimal solution of two transformation matrices,the NSTLFDA method takes the advantages of null space information when the training samples number is less than the dimensionality of the vector samples.The effectiveness of our new method was demonstrated by the ORL,Yale,and ExYaleB face databases.

Key words: Fisher discriminant analysis,Null space,Local preservation projection,Tensor subspace analysis

[1] 陈诗国,张道强.半监督降维方法的实验比较[J].软件学报,2011,22(1):28-43
[2] Li H S,Hao J,Barrio R,et al.Incremental manifold learning by spectral embedding methods[J].Pattern Recognition Letters,2011,32(10):1447-1455
[3] 吴枫,仲妍,吴泉源.基于增量核主成分分析的数据流在线分类框架[J].自动化学报,2010,36(4):534-542
[4] Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs.Fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720
[5] Lai Z H,Wan M H,Jin Z,et al.Sparse two-dimensional local discriminant projections for feature extraction[J].Neurocomputing,2011,74(4):629-637
[6] Archambeau C,Delannay N,Verleysen M.Mixtures of robustprobabilistic principal component analyzers[J].Neurocompu-ting,2008,71(7-9):1274-1282
[7] Ioffe S.Probabilistic linear discriminant analysis[C]∥Proceeing of the 9th European Conference on Computer Vision.Graz,Austria,2006:531-542
[8] Tao D,Li X,Wu X,et al.Geometric mean for subspace selection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):260-274
[9] Cevikalp M,Neamtu M,Barkana W A.Discriminative common vectors for face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):4-13
[10] Yang J,Zhang D,Frangi A F,et al.Two-dimensional PCA:anew approach to appearance-based face representation and reco-gnition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(1):131-137
[11] Li M,Yuan B.2D-LDA:a statistical linear discriminant analysis for image matrix[J].Pattern Recognition Letters,2005,26(5):527-532
[12] Zheng W S,Lai J H,Li S Z.1D-LDA vs.2D-LDA:When is vector-based linear discriminant analysis better than matrix-based[J].Pattern Recognition,2008,41(7):2156-2172
[13] Tao D C,Li X L,Wu X D,et al.General tensor discriminant analysis and gabor features for gait recognition[J].IEEE Tran-sactions on Pattern Analysis and Machine Intelligence,2007,29(10):1700-1715
[14] Wang J G,Sung E,Yau W Y.Incremental two-dimensional lineardiscriminant analysis with applications to face recognition[J].Network and Computer Applications,2010,33(1):314-322
[15] Wang Q,Chen F,Xu W L.Tracking by third-order tensor representation[J].IEEE Transactions on System,Man,and Cybernetics-Part B:Cybernetics,2011,41(2):385-396
[16] Wu Q,Zhang L Q,Shi G C.Robust multifactor speech feature extraction based on Gabor analysis[J].IEEE Transactions on Audio,Speech,and Language Processing,2011,19(4):927-936
[17] He X F,Yan S C,Hu Y X,et al.Face recognition using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):328-340
[18] He X F,Cai D,Niyogi P.Tensor subspace analysis[C]∥Advances in Neural Information Processing Systems.MIT Press,2005:499-507
[19] Yu W.Two-dimensional discriminant locality preserving projections for face recognition[J].Pattern Recognition Letters,2009,30(15):1378-1383
[20] Yan S C,Xu D,Zhang B Y,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51
[21] Liu S,Ruan Q.Orthogonal tensor neighborhood preserving embedding for facial expression recognition[J].Pattern Recognition,2011,44(7):1497-1513
[22] Lei Y K,Ding Z G,Hu R X,et al .Orthogonal local spline discriminant projection with application to face recognition[J].Pattern Recognition Letters,2011,32(4):615-625
[23] Zhou T Y,Tao D C,Wu X D.Manifold elastic net:a unified framework for sparse dimension reduction[J].Data Mining and Knowledge Discovery,2010,22(3):340-371
[24] Sugiyama M.Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis[J].Journal of Machine Learning Research,2007,8(1):1027-1061
[25] Zhang Z,Chow W S.Tensor locally linear discriminative analysis[J].IEEE Signal Processing Letters,2011,18(11):643-646
[26] Gu X H,Gong W G,Yang L P.Regularized locality preserving discriminant analysis for face recognition[J].Neurocomputing,2011,75(5):201-215
[27] Yu H,Yang J.A direct LDA algorithm for high-dimensional data-with application to face recognition[J].Pattern Recognition,2001,34(10):2067-2070
[28] Wang X,Tang X.Dual-space linear discriminant analysis for face recognition[C]∥Proceeding of IEEE Conference on Computer Vision and Patter Recognition.2004:564-569
[29] Chu D,Thye G S.A new and fast implementation for null space based linear discriminant analysis[J].Pattern Recognition,2010,43(4):1373-1379
[30] Yang L P,Gong W G,Gu X H,et al.Bagging null space locality preserving discriminant classifiers for face recognition[J].Pattern Recognition,2009,42:1853-1858
[31] Xu D,Yan S C,Lin S,et al.Convergent 2-D subspace learning with null space analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,18(12):1753-1759
[32] Eschenauer H,Koski J,Osyczka A.Multicriteria design optimization[M].Springer-Verlag,1990
[33] Georghiades A S,Belhumeur P N,Kriegman D J.From few to many:Illumination cone models for face recognition under variable lighting and pose[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(6):643-660
[34] Guan Z,Wang C,Chen Z,et al.Efficient face recognition using tensor subspace regression[J].Neurocomputing,2010,73(13):2744-2753

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!