计算机科学 ›› 2013, Vol. 40 ›› Issue (2): 222-228.

• 人工智能 • 上一篇    下一篇

一种求解多车辆合乘匹配问题的适应性算法

宋超超,王洪国,邵增珍,杨福萍   

  1. (山东师范大学管理科学与工程学院 济南 250014) (山东师范大学信息科学与工程学院 济南 2500142)
  • 出版日期:2018-11-16 发布日期:2018-11-16

Adaptive Algorithm for MRMP

  • Online:2018-11-16 Published:2018-11-16

摘要: 车辆合乘匹配问题是研究如何通过优化车辆路线及车辆一乘客匹配来搭乘尽量多的乘客的问题。目前国内 外的研究多存在模型单一、脱离实际、算法效率不高等问题。针对该问题,提出一种基于吸引粒子群算法的问题求解 方法。通过吸引粒子群算法进行多车辆问题向单车辆问题的转化,形成车辆同乘客之间的初次匹配。根据初次匹配 结果利用先验聚类的思想将初次匹配结果进行排序,寻找较优需求序列排序方式。最后,通过相应的匹配再优化策略 将需求序列进行再优化。对比实验表明,基于吸引粒子群算法的问题求解方式能以较高的搭乘成功率以及较低的花 费完成车辆合乘匹配问题。

关键词: 吸引粒子群,车辆合乘,先验聚类,需求序列

Abstract: Multi vehicle ride matching problem(MRMP) studies the problem of taking passengers as much as possible through optimizing vehicles' route and matching between vehicles and passengers. 13ut at present, there arc some prob- lems in the researches such as models divorce from reality and low efficiency of algorithms. For this problem,this paper presented APSO(Attractive Particle Swarm Optimization) to solve this problem. I}he MRMP is transfered to RMP through APSO to form the first matching result between vehicles and passengers. And the best sort order is looked through sorting the result, making use of priori clustering based on the result from first matching. And at last, we opti- mined the solution one times more through optimized rules. Contrast experiment shows that the method based on APSO can solve the problem on a high rate of matching and a low cost.

Key words: APSO, MRMP, Prior clustering, Demand sequence

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!