计算机科学 ›› 2009, Vol. 36 ›› Issue (8): 258-259.

• 人工智能 • 上一篇    下一篇

改进粒子群优化算法研究

王勇,张伟,陈军,韦鹏程   

  1. (重庆教育学院计算机系 重庆 400067)
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受重庆市教委项目(No. KJ071502,071501,070409,080809, 081501,081502),重庆市科委自然科学基金项目(CSTC, 2008BB2199)资助。

Study of Improved Particle Swarm Optimization

WANG Yong,ZHANG Wei,CHEN Jun,WEI Peng-cheng   

  • Online:2018-11-16 Published:2018-11-16

摘要: 提出一种新的粒子群优化(Particle Swarm Optimization, PSO)算法,将微调(Fine-Tuning)机$}}l导入PSO算法中,可提高算法在最优区域局部搜寻的能力,改善PSO在搜寻末期,粒子相似度过高的缺陷。最后用2种不同复杂程度的函数为例,比较本算法与PSO算法的最优化能力。结果显示,本算法在搜寻成功率及平均收敛时间、平均收敛代数的性能表现上皆优于PSO算法。

关键词: 粒子群优化,微调机制,多极值函数

Abstract: This paper intends to develop an improved particle swarm optimization (PSO) algorithm. The proposed method will introduce "Fin}Tuning" into the PSO algorithm which can promote the ability of local search to modify the defects of high similarity of individual particles on the late period of search following PSO algorithm. At last the performance of the improved PSO and PSO will be compared by optimizing five massively multimodal functions with varying complexities. The results show that the performance of the improved PSO is better than PSO on search success rate, average convergence time and average convergence generations.

Key words: Particle swarm optimization, Fin}tuning mechanism, Multimodal functions

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!