计算机科学 ›› 2009, Vol. 36 ›› Issue (7): 215-217.doi: 10.11896/j.issn.1002-137X.2009.07.052

• 人工智能 • 上一篇    下一篇

一种基于支持向量回归和动态特征选择的梨黑星病预测方法

辜丽川,钟金琴,张友华,李绍稳   

  1. (安徽农业大学信息与计算机学院 合肥230036);(安徽大学职业技术学院 合肥230031)
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金(30800663,70871033),国家863高科技计划(2007AA04Z116),安 徽省十一五科技攻关项目(8070302770),安徽省高等学校省级自然科学研究项目(KJ2008B111)资助。

Method of Pre-decison on Pear Scab Based on SVR and Dynamical Feature Selection

GU Li-chuan,ZHONG Jin-qin,ZHANG You-hua,LI Shao-wen   

  • Online:2018-11-16 Published:2018-11-16

摘要: 当前作物病害预测方法存在时效性差、预测结果拟合度较低的问题。提出一种基于回归的预测方法框架,用SVM对数据向量特征进行约简,它可以重复选择密切相连的特征和构建可动态优化自身参数。用本方法对黄河故道地区场山酥梨黑星病为例进行预测测试,与现有方法以及实测数据进行相关性统计分析。结果表明在对酥梨的黑星病预测上提出的方法,在拟合度、推理效率和准确率上具有显著的优势。

关键词: 支持向量回归,特征选择,病害预测,梨黑星病

Abstract: At present, there are time consuming and poor effect of forecasting in the method of Pr}decison on fruit diseries. A new forecast method SVR-D1. 1 based on regression was proposed in this paper, features reduction was conducted by using SVM. The method can select keen correlative features repeatedly and construct its dynamic optimizing parameters. Relativity statistical analysis was conducted between the real data and the forecasting data of Dangshansu pear scab, which show the method is more super and more valid than the current method in efficiency and precision of forecasting the occurrence tendency of Dangshansu pear scab. I}he experiment showed that the approach has obvious advantage on fitting degree, the reasoning efficiency and accuracy.

Key words: Support vector rcgression, Fcature selection, Disease forecasting, Pear scab

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!