计算机科学 ›› 2008, Vol. 35 ›› Issue (10): 200-203.

• • 上一篇    下一篇

用页组拓扑平均距离改善页面聚类算法

林文龙 刘业政 余智学   

  1. 合肥工业大学电子商务研究所,合肥230009
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    国家自然科学基金项目(70672097),国家自然科学基金重点项目(70631003).

LIN Wen-long LIU Ye-zheng YU Zhi-xue (Institute of E-Business, Hefei University of Technology, Hefei 230009, China)   

  • Online:2018-11-16 Published:2018-11-16

摘要: 提出一种支持站点结构优化的页面聚类改进算法,通过引入图论中的拓扑平均距离,量化评估与挖掘站点结构中访问效率较低的内容文档集合为结构优化的兴趣页组,挖掘的页组具有更高的兴趣性,并将兴趣页组挖掘算法融入到拓扑优化算法中。实验结果表明改进算法能更好地优化站点结构,较一般算法收敛性好。

关键词: Web使用挖掘 页面聚类 频繁访问页组 自适应站点

Abstract: An enhanced algorithm which supports Website structure optimization was proposed for page clustering. A quantitative criteria was proposed by introducing the average distance in graph and the low access efficiency Web content pages group was discovered as

Key words: Web usage mining,Page clustering,Frequently visited page group,Self-adaptive Website

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!