计算机科学 ›› 2017, Vol. 44 ›› Issue (3): 307-312.doi: 10.11896/j.issn.1002-137X.2017.03.062

• 图形图像与模式识别 • 上一篇    下一篇

帧间连续结构稀疏表示的目标跟踪算法

侯跃恩,李伟光   

  1. 嘉应学院计算机学院 梅州514000,华南理工大学机械与汽车工程学院 广州510000
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家高技术研究发展计划(863计划)(2015AA043005),广东省自然科学基金(2014A030307038)资助

Inter-frame Consistency Structured Sparse Representation Object Tracking Algorithm

HOU Yue-en and LI Wei-guang   

  • Online:2018-11-13 Published:2018-11-13

摘要: 目标跟踪技术在日常生活和生产中有着广泛的应用,但是设计一种具有鲁棒性、准确性和实时性的跟踪算法仍具有很大的难度。为了提高跟踪算法的性能,设计了一种帧间连续结构稀疏表示目标跟踪算法。该算法在粒子滤波框架下进行,采用结构稀疏表示的原理重构候选目标。首先采用目标和背景样本构建稀疏字典, 以提高算法对目标和背景的区分能力。然后,构建含有帧间连续约束项的结构稀疏表示目标方程,该目标方程可以有效利用目标状态的连续性来确定目标状态。进而,根据重构残差设计了一种相似度描述方法,与传统方法相比,该方法对相似目标不敏感。最后,通过6组对比实验证明该算法具有较高的鲁棒性和准确性。

关键词: 目标跟踪,稀疏系数,粒子滤波,稀疏表示,帧间连续

Abstract: Object tracking technology is widely used in daily life and production.Howe 〖BHDWG1,WK42,WK43,WK42W〗第3期 侯跃恩,等:帧间连续结构稀疏表示的目标跟踪算法 ver,designing a accurate,robust and real-time object tracker is still a challenging task.For improving the performance of tracking algorithm,an inter-frame consistency structured sparse representation object tracking algorithm was designed.The algorithm is carried out under the framework of particle filter,and uses the principle of structured sparse representation to recombine candidate targets.Firstly,the dictionary is constructed by target and background templates.Hence the ability of discriminating target and background is improved.Secondly,a structured sparse representation objective function,which contains inter-frame consistency constraint term,is built.The function is able to decide targets by using the consistency of target state.Thirdly,according to the residual error information,a likelihood measurement is developed.Comparing to traditional likelihood measurements,the proposed measurement is insensitive to similar target.Finally,the proposed tracking algorithm was proved to be more robust and accurate through 6 compared experiments.

Key words: Object tracking,Sparse coefficient,Particle filter,Sparse representation,Inter-frame consistency

[1] YILMAZ A,JAVED O,SHAH M.Object tracking:a survey[J].ACM Computing Surveys,2006,38(4).
[2] HUANG K Q,CHEN X T,KANG Y F,et al.Intelligent visual surveillance:a review[J].China Journal of Computers,2015,38(6):1093-1118.(in Chinese) 黄凯奇,陈晓棠,康运锋,等.智能视频监控技术综述[J].计算机学报,2015,38(6):1093-1118.
[3] WRIGHT J,YANG A Y,ARVIND G,et al.Robust face recognition via sparse representation[J].Pattern Analysis and Machine Intelligence,2008,31(2):210-227.
[4] YANG M,FENG X C.Sparse representation or collaborativerepresentation:Which helps face recognition [C]∥IEEE International Conference on Computer Vision.Barcelona,IEEE,2011:471-478.
[5] YANG M,ZHANG L,ZHANG D,et al.Relaxed collaborative representation for pattern classification[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI,IEEE,2012:2224-2231.
[6] AGARWAL S,ROTH D.Learning a sparse representation for object detection[J].Computer Science,2006,2353:97-101.
[7] MEI X,LING H.Robust visual tracking using 1 minimization[C]∥IEEE Conference on Computer Vision and Pattern Recognition.2009:1436-1443.
[8] MEI X,LING H,WU Y,et al.Minimum error bounded efficient L1 tracker with occlusion detection[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Kyoto,IEEE,2011:1257-1264.
[9] BAO C,WU Y,LING H,et al.Real time robust L1 tracker using accelerated proximal gradient approach[C]∥IEEE Confe-rence on Computer Vision and Pattern Recognition.Providence,RI,IEEE,2012:1830-1837.
[10] ZHUANG B H,LU H C,XIAO Z Y,et al.Visual tracking via discriminative sparse similarity map[J].IEEE Transactions on Image Processing,2014,23(4):1872-1881.
[11] WANG B X,ZHAO B J,TANG L B,et al.Robust visual trac-king algorithm based on bidirectional sparse representation[J].Acta Phys.Sin.,2014,63(23):234201.(in Chinese) 王保宪,赵保军,唐林波,等.基于双向稀疏表示的鲁棒目标跟踪算法[J].物理学报,2014,63(23):234201.
[12] WANG D,LU H,YANG M H.Online object tracking withsparse prototypes[J].IEEE Trans.on Image Process,2013,22(1):314-325.
[13] LAN X Y,MA A J,YUAN P C.Multi-Cue visual tracking using robust feature-level fusion based on joint sparse representation[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Columbus,2014:1194-1201.
[14] ZHANG X D,CHEN Z H,HU L M,et al.Object trackingmethod based on sparse representation of joint template[J].Control and Decision,2015,30(9):1696-1700.(in Chinese) 张旭东,陈仲海,胡良梅,等.基于联合模板稀疏表示的目标跟踪算法[J].控制与决策,2015,30(9):1696-1700.
[15] BAI T,LI Y F.Robust visual tracking with structured sparse representation[J].Pattern Recognition,2012,45(6):2390-2404.
[16] JIA X,LU H C,YANG M H.Visual tracking via adaptive structural local sparse appearance model[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI,IEEE,2012:1822-1829.
[17] ZHONG W,LU H,Yang M H.Robust object tracking via sparsity-based collaborative model[C]∥IEEE Conference on Computer Vision and Pattern Recognition.Providence,RI,IEEE,2012:1838-1845.
[18] EVERINGHAM M.The Pascal visual object classes (voc) challenge[J].International Journal of Computer Vision,2010,88(2):303-338.
[19] BAI T,LI Y F.Robust visual tracking with structured sparse representation[J].Pattern Recognit,2012,45(6):2390-2404.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!