摘要: 本文在一类称为一般存储器神经网络(General Memory Neural Network(GMNN))的统一框架下来研究学习收敛性。该一般模型类的结构由三部分组成:输入空间量化、存储器地址产生器、查表式某种组合输出。当产生的地址是固定有限的个数以及网络输出是线性求和时,可以证明GMNN能在最小平方误差意义下收敛。CMAC(Cerebellar Model Articulation Controller)、SLLUP(Single—Layer Look up Perceptrons)是该类模型的典型代表
No related articles found! |
|