计算机科学 ›› 2019, Vol. 46 ›› Issue (10): 307-310.doi: 10.11896/jsjkx.190300061
杨柳1, 陈丽敏1, 易玉根2
YANG Liu1, CHEN Li-min1, YI Yu-gen2
摘要: 人脸识别是图像处理和模式识别中的研究热点问题之一,对此,文中提出了一种基于自适应加权子模式判别邻域投影的人脸识别方法。该方法首先将人脸图像划分成较小的人脸图像块,并将相同位置的子图像构建成子模式集;其次,为了提高低维特征的判别能力,同时考虑数据的局部结构信息和类别标签信息,对于每个子模式集,构建一个局部判别邻域图;最后,考虑不同子模式集对人脸图像识别的贡献,引入一个非负权值向量结合所有子模式集的局部散度矩阵,以找出同幅人脸图像的不同子图像之间的互补信息。实验结果表明,相比于其他方法,所提方法的性能更优。
中图分类号:
[1]JAIN A K,LI S Z.Handbook of face recognition[M].New York:Springer,2011. [2]SUBBAN R,MANKAME D P.Human face recognition biometric techniques:analysis and review[M]//Recent Advances in Intelligent Informatics.Springer International Publishing,2014:455-463. [3]ZOU J,JI Q,NAGY G.A comparative study of local matching approach for face recognition[J].IEEE Transactions on Image Processing,2007,16(10):2617-2628. [4]YI Y,ZHANG B,KONG J,et al.An improved locality sensitive discriminant analysis approach for feature extraction[J].Multimedia Tools and Applications,2015,74(1):85-104. [5]JOLLIFFE I.Principal component analysis[M].Berlin:John Wiley & Sons,Ltd,2002. [6]CAO D,FU C Y,JIN G.Survey of Target Tracking Algorithms Based on Machine Learning[J].Computer Science,2016,43(12):1-7,35.(in Chinese) 曹东,付承毓,金钢.基于机器学习的目标跟踪算法研究综述[J].计算机科学,2016,43(12):1-7,35. [7]HYVÄRINEN A,OJA E.Independent component analysis:al-gorithms and applications[J].Neural Networks,2000,13(4):411-430. [8]LEE D D,SEUNG H S.Algorithms for non-negative matrix factorization[C]//Advances in Neural Information Processing Systems.2001:556-562. [9]ROWEIS S T,SAUL L K.Nonlinear dimensionality reduction by locally linear embedding[J].Science,2000,290(5500):2323-2326. [10]BELKIN M,NIYOGI P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1373-1396. [11]NIYOGI X.Locality preserving projections[C]//Neural Information Processing Systems.MIT,2004:153. [12]ZHANG W,XUE X,LU H,et al.Discriminant neighborhood embedding for classification[J].Pattern Recognition,2006,39(11):2240-2243. [13]FUKUNAGA K.Introduction to statistical pattern recognition[M].Salt Lake City:Academic Press,2013. [14]ADINI Y,MOSES Y,ULLMAN S.Face recognition:The problem of compensating for changes in illumination direction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):721-732. [15]GOTTUMUKKAL R,ASARI V K.An improved face recognition technique based on modular PCA approach[J].Pattern Reco-gnition Letters,2004,25(4):429-436. [16]CHEN S,ZHU Y.Subpattern-based principle component analysis[J].Pattern Recognition,2004,37(5):1081-1083. [17]TAN K,CHEN S.Adaptively weighted sub-pattern PCA for face recognition[J].Neurocomputing,2005,64(3):505-511. [18]ZHU Y L.Sub-pattern non-negative matrix factorization based on random subspace for face recognition[C]//2007 International Conference on Wavelet Analysis and Pattern Recognition.IEEE,2007,3:1356-1360. [19]WANG J,ZHANG B,WANG S,et al.An adaptively weighted sub-pattern locality preserving projection for face recognition[J].Journal of Network and Computer Applications,2010,33(3):323-332. [20]BOYD S,VANDENBERGHE L.Convex optimization[M].Cambridge:Cambridge University Press,2004. [21]MA J J.Uncorrelated Sparse Preserving Projection in the Application of Face Recognition.Journal of Chongqing University of Technology(Natural Science),2016, 30(7):129-134. (in Chinese) 马家军.不相关稀疏保留投影在人脸识别中的应用.重庆理工大学学报(自然科学),2016,30(7):129-134. [22]ZHU Z G,HE M X. Gender discriminant model of face based on local feature and depth neural network. MACHINE TOOL &HYDRAULICS,2018,46(6):127-132,151.(in Chinese) 朱正国,何明星. 基于局部特征和深度神经网络的人脸性别判别模型研究.机床与液压,2018,46(6):127-132,151. [23]LI P,BU J,CHEN C,et al.Relational multimanifold cocluste-ring[J].IEEE Transactions on Cybernetics,2013,43(6):1871-1881. |
[1] | 金堃, 陈少昌. 步态识别现状与发展[J]. 计算机科学, 2019, 46(6A): 30-34. |
[2] | 韩旭, 谌海云, 王溢, 许瑾. 基于SPCA和HOG的单样本人脸识别算法[J]. 计算机科学, 2019, 46(6A): 274-278. |
[3] | 陈晋音, 王桢, 陈劲聿, 陈治清, 郑海斌. 基于深度学习的智能教学系统的设计与研究[J]. 计算机科学, 2019, 46(6A): 550-554. |
[4] | 李梦潇, 姚仕元. 基于PCA的人脸识别系统的设计与改进[J]. 计算机科学, 2019, 46(6A): 577-579. |
[5] | 包晓安, 林晓东, 张娜, 徐璐, 吴彪. 应用色彩纹理特征的人脸防欺骗算法[J]. 计算机科学, 2019, 46(10): 180-185. |
[6] | 王燕, 王双印. 基于卷积神经网络的人脸信息增强识别研究[J]. 计算机科学, 2018, 45(8): 268-271. |
[7] | 王雪峤,齐华山,袁家政,梁爱华,孙力红. 二维Gabor特征与三维NP-3DHOG特征融合的人脸识别算法[J]. 计算机科学, 2018, 45(6A): 247-251. |
[8] | 娄雪, 闫德勤, 王博林, 王族. 一种改进的邻域保持嵌入算法[J]. 计算机科学, 2018, 45(6A): 255-258, 278. |
[9] | 李小薪,吴克宋,齐盼盼,周旋,刘志勇. 局部球面规范化嵌入:PCANet的一种改进方案[J]. 计算机科学, 2018, 45(5): 238-242, 249. |
[10] | 李小薪,李晶晶,贺霖,刘志勇. 基于噪声空间结构嵌入和高维梯度方向嵌入的鲁棒人脸识别方法[J]. 计算机科学, 2018, 45(4): 285-290. |
[11] | 卢涛,管英杰,潘兰兰,张彦铎. 基于低秩约束的极限学习机高效人脸识别算法[J]. 计算机科学, 2018, 45(3): 294-299. |
[12] | 高放,黄樟钦. 基于异构多核并行加速的嵌入式神经网络人脸识别方法[J]. 计算机科学, 2018, 45(3): 288-293. |
[13] | 张永,万鸣华. 广义的鉴别局部中值保持投影及人脸识别[J]. 计算机科学, 2018, 45(2): 90-93, 108. |
[14] | 张志禹, 刘思媛. 一种基于Curv-SAE特征融合的人脸降维和识别方法[J]. 计算机科学, 2018, 45(10): 267-271, 305. |
[15] | 王渐韬,赵丽,齐兴斌. 自适应三维形变模型结合流形分析的人脸识别方法[J]. 计算机科学, 2017, 44(Z6): 232-235, 239. |
|