计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 71-77.doi: 10.11896/jsjkx.210300222

• 计算机图形学&多媒体* 上一篇    下一篇

基于边云协同的人脸识别方法研究

魏勤, 李瑛娇, 娄平, 严俊伟, 胡辑伟   

  1. 武汉理工大学信息工程学院 武汉430070
  • 收稿日期:2021-03-22 修回日期:2021-11-17 出版日期:2022-05-15 发布日期:2022-05-06
  • 通讯作者: 魏勤((qinwei@whut.edu.cn)
  • 基金资助:
    国家自然科学基金(52075404);武汉市科技局应用基础前沿专项(2020010601012176)

Face Recognition Method Based on Edge-Cloud Collaboration

WEI Qin, LI Ying-jiao, LOU Ping, YAN Jun-wei, HU Ji-wei   

  1. School of Information Engineering,Wuhan University of Technology,Wuhan 430070,China
  • Received:2021-03-22 Revised:2021-11-17 Online:2022-05-15 Published:2022-05-06
  • About author:WEI Qin,born in 1980,Ph.D,associate professor,postgraduate supervisor.Her main research interests include signal processing and fault diagnosis.
  • Supported by:
    National Natural Science Foundation of China(52075404) and Application Foundation Frontier Special Project of Wuhan Science and Technology Bureau(2020010601012176).

摘要: 人脸识别被广泛应用于购物、安检、出行、支付和考勤等日常生活中,人脸识别系统需要大的算力与存储空间,因此往往将需要识别的人脸通过网络传送到云平台进行识别,但网络覆盖、拥塞或延时等问题造成人脸识别系统难以满足实际应用的需求,用户体验差。针对人脸识别中存在的问题,提出了基于边云协同的人脸识别方法。该方法结合云计算的处理能力和边缘计算的实时性,使人脸识别系统不受网络状态的约束,应用更加广泛,用户体验更好。在云端,提出了LResNet特征提取方法,改进了ResNet34网络结构,并利用ArcFace人脸损失函数监督训练过程,使网络学习到更多的人脸角度特性;在边缘端,针对计算资源和存储资源有限的问题,提出了SResNet特征提取方法,利用深度可分离卷积轻量化LResNet网络结构,大大减少了网络参数和计算量。边云协同的人脸识别实验表明,所提系统在任何网络状态下都能进行实时识别且准确率较高。

关键词: ArcFace, ResNet, 边云协同, 人脸识别, 深度可分离卷积

Abstract: Face recognition is widely used in daily life such as shopping,security check,travel,payment and work attendance.Face recognition systems need strong computing power and large storage space,so face images that need to be recognized are usually transmitted to the cloud platform through the network.Due to the problems of network coverage,congestion and delay,face re-cognition systems are difficult to meet the needs of actual application,and the user experience is poor.Aiming at the problems in face recognition,a face recognition method based on edge-cloud collaboration is proposed.This method combines the processing ability of cloud computing and the real-time performance of edge computing,so that face recognition systems are not constrained by the network status,and its application is more extensive and the user experience is better.In the cloud,the LResNet feature extraction method is proposed to improve the ResNet34 network structure,and the ArcFace face loss function is used to supervise the training process,so that the network can learn more face angle features.At the edge,due to the limited computing resources and storage resources,a SResNet feature extraction method is proposed.Deep separable convolution is used to lighten the LResNet network structure,and it has greatly reduced network parameters and computation.The face recognition experiment on edge-cloud collaboration shows that the system can recognize faces in real time with a high accuracy rate under any network status.

Key words: ArcFace, Deep separable convolution, Edge-Cloud collaboration, Face recognition, ResNet

中图分类号: 

  • TP391.41
[1]TURK M,PENTLAND A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
[2]WANG Y,LI X.Face Recognition Based on LDP Feature and Bayesian Model[J].Computer Science,2017,44(12):283-286,291.
[3]TARIQ U,LIN K H,LI Z,et al.Recognizing emotions from an ensemble of features[J].IEEE Transactions on Systems,Man and Cybernetics,Part B(Cybernetics),2012,42(4):1017-1026.
[4]WU Q H,GAO X D.Face Recognition in Non-ideal Environment Based on Sparse Representation and Support Vector Machine[J].Computer Science,2020,47(6):121-125.
[5]DENG L,XU G L,LI M J,et al.Fast Face Recognition Based on Deep Learning and Multiple Hash Similarity Weighting[J].Computer Science,2020,47(9):163-168.
[6]SUN Y,WANG X G,TANG X,et al.Deep Learning Face Representation from Predicting 10 000 Classes[C]//27th IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE,2014:1891-1898.
[7]SUN Y,CHEN Y H,WANG X G,et al.Deep Learning FaceRepresentation by Joint Identification-Verification[EB/OL].(2014-06-18)[2020-12-20].https://arxiv.org/abs/1406.4773.
[8]SUN Y,WANG X G,TANG X,et al.Deeply learned face representations are sparse,selective,and robust[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:2892-2900.
[9]KIM Y,PARK W,ROH M C,et al.GroupFace:Learning Latent Groups and Constructing Group-Based Representations for Face Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020:5620-5629.
[10]DUONG C N,TRUONG T D,LUU K,et al.Vec2Face:Unveil Human Faces From Their Blackbox Features in Face Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020:6131-6140.
[11]SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:Aunified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:815-823.
[12]WANG S S,CHEN Y.A joint lass function for deep face recognition[J].Multidimensional Systems and Signal Processing,2019,30(3):1517-1530.
[13]HE K M,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[14]HE K M,ZHANG X,REN S,et al.Identity Mappings in Deep Residual Networks[C]//14th European Conference on Compu-ter.Amsterdam:IEEE,2016:630-645.
[15]LIU W,WEN Y,YU Z,et al.SphereFace:Deep Hypersphere Embedding for Face Recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6738-6746.
[16]DENG J,GUO J,XUE N,et al.ArcFace:Additive Angular Margin Loss for Deep Face Recognition[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:4685-4694.
[17]HOWARD A G,ZHU M,CHEN B,et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL].(2017-04-17)[2020-12-20].https://arxiv.org/abs/1704.04861.
[18]SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:Inverted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4510-4520.
[19]DONG Y,LEI Z,LIAO S C,et al.Learning face representation from scratch[EB/OL].(2014-11-28)[2020-12-20].https://arxiv.org/abs/1411.7923.
[20]HUANG Y,WANG Y,TAI Y,et al.CurricularFace:Adaptive Curriculum Learning Loss for Deep Face Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2020:5900-5909.
[1] 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行.
基于步态分类辅助的虚拟IMU的行人导航方法
Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification
计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148
[2] 黄璞, 杜旭然, 沈阳阳, 杨章静.
基于局部正则二次线性重构表示的人脸识别
Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation
计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018
[3] 黄璞, 沈阳阳, 杜旭然, 杨章静.
基于局部约束特征线表示的人脸识别
Face Recognition Based on Locality Constrained Feature Line Representation
计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169
[4] 程祥鸣, 邓春华.
基于无标签知识蒸馏的人脸识别模型的压缩算法
Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation
计算机科学, 2022, 49(6): 245-253. https://doi.org/10.11896/jsjkx.210400023
[5] 苗启广, 辛文天, 刘如意, 谢琨, 王泉, 杨宗凯.
面向智慧教育行为分析的图卷积骨架动作识别方法
Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis
计算机科学, 2022, 49(2): 156-161. https://doi.org/10.11896/jsjkx.220100061
[6] 何嘉玉, 黄宏博, 张红艳, 孙牧野, 刘亚辉, 周哲海.
基于深度学习的单幅图像三维人脸重建研究综述
Review of 3D Face Reconstruction Based on Single Image
计算机科学, 2022, 49(2): 40-50. https://doi.org/10.11896/jsjkx.210500215
[7] 陈长伟, 周晓峰.
快速局部协同表示分类器及其在人脸识别中的应用
Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition
计算机科学, 2021, 48(9): 208-215. https://doi.org/10.11896/jsjkx.200800155
[8] 和青芳, 王慧, 程光.
自适应小数据集乳腺癌病理组织分类研究
Research on Classification of Breast Cancer Pathological Tissues with Adaptive Small Data Set
计算机科学, 2021, 48(6A): 67-73. https://doi.org/10.11896/jsjkx.201000188
[9] 温荷, 罗频捷.
基于改进脉冲耦合神经网络的动态人脸识别
Dynamic Face Recognition Based on Improved Pulse Coupled Neural Network
计算机科学, 2021, 48(6A): 85-88. https://doi.org/10.11896/jsjkx.200600172
[10] 刘汉卿, 康晓东, 李博, 张华丽, 冯继超, 韩俊玲.
利用深度学习网络对医学影像分类识别的比较研究
Comparative Study on Classification and Recognition of Medical Images Using Deep Learning Network
计算机科学, 2021, 48(6A): 89-94. https://doi.org/10.11896/jsjkx.201000116
[11] 白子轶, 毛懿荣, 王瑞平.
视频人脸识别进展综述
Survey on Video-based Face Recognition
计算机科学, 2021, 48(3): 50-59. https://doi.org/10.11896/jsjkx.210100210
[12] 赵冬梅, 宋会倩, 张红斌.
基于时间因子和复合CNN结构的网络安全态势评估
Network Security Situation Based on Time Factor and Composite CNN Structure
计算机科学, 2021, 48(12): 349-356. https://doi.org/10.11896/jsjkx.210400227
[13] 杨章静, 王文博, 黄璞, 张凡龙, 王昕.
基于局部加权表示的线性回归分类器及人脸识别
Local Weighted Representation Based Linear Regression Classifier and Face Recognition
计算机科学, 2021, 48(11A): 351-359. https://doi.org/10.11896/jsjkx.210100173
[14] 栾晓, 李晓双.
基于多特征融合的人脸活体检测算法
Face Anti-spoofing Algorithm Based on Multi-feature Fusion
计算机科学, 2021, 48(11A): 409-415. https://doi.org/10.11896/jsjkx.210100181
[15] 陆要要, 袁家斌, 何珊, 王天星.
基于超分辨率重建的低质量视频人脸识别方法
Low-quality Video Face Recognition Method Based on Super-resolution Reconstruction
计算机科学, 2021, 48(11A): 295-302. https://doi.org/10.11896/jsjkx.201200159
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!