计算机科学 ›› 2022, Vol. 49 ›› Issue (5): 71-77.doi: 10.11896/jsjkx.210300222
魏勤, 李瑛娇, 娄平, 严俊伟, 胡辑伟
WEI Qin, LI Ying-jiao, LOU Ping, YAN Jun-wei, HU Ji-wei
摘要: 人脸识别被广泛应用于购物、安检、出行、支付和考勤等日常生活中,人脸识别系统需要大的算力与存储空间,因此往往将需要识别的人脸通过网络传送到云平台进行识别,但网络覆盖、拥塞或延时等问题造成人脸识别系统难以满足实际应用的需求,用户体验差。针对人脸识别中存在的问题,提出了基于边云协同的人脸识别方法。该方法结合云计算的处理能力和边缘计算的实时性,使人脸识别系统不受网络状态的约束,应用更加广泛,用户体验更好。在云端,提出了LResNet特征提取方法,改进了ResNet34网络结构,并利用ArcFace人脸损失函数监督训练过程,使网络学习到更多的人脸角度特性;在边缘端,针对计算资源和存储资源有限的问题,提出了SResNet特征提取方法,利用深度可分离卷积轻量化LResNet网络结构,大大减少了网络参数和计算量。边云协同的人脸识别实验表明,所提系统在任何网络状态下都能进行实时识别且准确率较高。
中图分类号:
[1]TURK M,PENTLAND A.Eigenfaces for Recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86. [2]WANG Y,LI X.Face Recognition Based on LDP Feature and Bayesian Model[J].Computer Science,2017,44(12):283-286,291. [3]TARIQ U,LIN K H,LI Z,et al.Recognizing emotions from an ensemble of features[J].IEEE Transactions on Systems,Man and Cybernetics,Part B(Cybernetics),2012,42(4):1017-1026. [4]WU Q H,GAO X D.Face Recognition in Non-ideal Environment Based on Sparse Representation and Support Vector Machine[J].Computer Science,2020,47(6):121-125. [5]DENG L,XU G L,LI M J,et al.Fast Face Recognition Based on Deep Learning and Multiple Hash Similarity Weighting[J].Computer Science,2020,47(9):163-168. [6]SUN Y,WANG X G,TANG X,et al.Deep Learning Face Representation from Predicting 10 000 Classes[C]//27th IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE,2014:1891-1898. [7]SUN Y,CHEN Y H,WANG X G,et al.Deep Learning FaceRepresentation by Joint Identification-Verification[EB/OL].(2014-06-18)[2020-12-20].https://arxiv.org/abs/1406.4773. [8]SUN Y,WANG X G,TANG X,et al.Deeply learned face representations are sparse,selective,and robust[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:2892-2900. [9]KIM Y,PARK W,ROH M C,et al.GroupFace:Learning Latent Groups and Constructing Group-Based Representations for Face Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020:5620-5629. [10]DUONG C N,TRUONG T D,LUU K,et al.Vec2Face:Unveil Human Faces From Their Blackbox Features in Face Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2020:6131-6140. [11]SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:Aunified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:815-823. [12]WANG S S,CHEN Y.A joint lass function for deep face recognition[J].Multidimensional Systems and Signal Processing,2019,30(3):1517-1530. [13]HE K M,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778. [14]HE K M,ZHANG X,REN S,et al.Identity Mappings in Deep Residual Networks[C]//14th European Conference on Compu-ter.Amsterdam:IEEE,2016:630-645. [15]LIU W,WEN Y,YU Z,et al.SphereFace:Deep Hypersphere Embedding for Face Recognition[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6738-6746. [16]DENG J,GUO J,XUE N,et al.ArcFace:Additive Angular Margin Loss for Deep Face Recognition[C]//2019 IEEE Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:4685-4694. [17]HOWARD A G,ZHU M,CHEN B,et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL].(2017-04-17)[2020-12-20].https://arxiv.org/abs/1704.04861. [18]SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:Inverted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4510-4520. [19]DONG Y,LEI Z,LIAO S C,et al.Learning face representation from scratch[EB/OL].(2014-11-28)[2020-12-20].https://arxiv.org/abs/1411.7923. [20]HUANG Y,WANG Y,TAI Y,et al.CurricularFace:Adaptive Curriculum Learning Loss for Deep Face Recognition[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2020:5900-5909. |
[1] | 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行. 基于步态分类辅助的虚拟IMU的行人导航方法 Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification 计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148 |
[2] | 黄璞, 杜旭然, 沈阳阳, 杨章静. 基于局部正则二次线性重构表示的人脸识别 Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation 计算机科学, 2022, 49(6A): 407-411. https://doi.org/10.11896/jsjkx.210700018 |
[3] | 黄璞, 沈阳阳, 杜旭然, 杨章静. 基于局部约束特征线表示的人脸识别 Face Recognition Based on Locality Constrained Feature Line Representation 计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169 |
[4] | 程祥鸣, 邓春华. 基于无标签知识蒸馏的人脸识别模型的压缩算法 Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation 计算机科学, 2022, 49(6): 245-253. https://doi.org/10.11896/jsjkx.210400023 |
[5] | 苗启广, 辛文天, 刘如意, 谢琨, 王泉, 杨宗凯. 面向智慧教育行为分析的图卷积骨架动作识别方法 Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis 计算机科学, 2022, 49(2): 156-161. https://doi.org/10.11896/jsjkx.220100061 |
[6] | 何嘉玉, 黄宏博, 张红艳, 孙牧野, 刘亚辉, 周哲海. 基于深度学习的单幅图像三维人脸重建研究综述 Review of 3D Face Reconstruction Based on Single Image 计算机科学, 2022, 49(2): 40-50. https://doi.org/10.11896/jsjkx.210500215 |
[7] | 陈长伟, 周晓峰. 快速局部协同表示分类器及其在人脸识别中的应用 Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition 计算机科学, 2021, 48(9): 208-215. https://doi.org/10.11896/jsjkx.200800155 |
[8] | 和青芳, 王慧, 程光. 自适应小数据集乳腺癌病理组织分类研究 Research on Classification of Breast Cancer Pathological Tissues with Adaptive Small Data Set 计算机科学, 2021, 48(6A): 67-73. https://doi.org/10.11896/jsjkx.201000188 |
[9] | 温荷, 罗频捷. 基于改进脉冲耦合神经网络的动态人脸识别 Dynamic Face Recognition Based on Improved Pulse Coupled Neural Network 计算机科学, 2021, 48(6A): 85-88. https://doi.org/10.11896/jsjkx.200600172 |
[10] | 刘汉卿, 康晓东, 李博, 张华丽, 冯继超, 韩俊玲. 利用深度学习网络对医学影像分类识别的比较研究 Comparative Study on Classification and Recognition of Medical Images Using Deep Learning Network 计算机科学, 2021, 48(6A): 89-94. https://doi.org/10.11896/jsjkx.201000116 |
[11] | 白子轶, 毛懿荣, 王瑞平. 视频人脸识别进展综述 Survey on Video-based Face Recognition 计算机科学, 2021, 48(3): 50-59. https://doi.org/10.11896/jsjkx.210100210 |
[12] | 赵冬梅, 宋会倩, 张红斌. 基于时间因子和复合CNN结构的网络安全态势评估 Network Security Situation Based on Time Factor and Composite CNN Structure 计算机科学, 2021, 48(12): 349-356. https://doi.org/10.11896/jsjkx.210400227 |
[13] | 杨章静, 王文博, 黄璞, 张凡龙, 王昕. 基于局部加权表示的线性回归分类器及人脸识别 Local Weighted Representation Based Linear Regression Classifier and Face Recognition 计算机科学, 2021, 48(11A): 351-359. https://doi.org/10.11896/jsjkx.210100173 |
[14] | 栾晓, 李晓双. 基于多特征融合的人脸活体检测算法 Face Anti-spoofing Algorithm Based on Multi-feature Fusion 计算机科学, 2021, 48(11A): 409-415. https://doi.org/10.11896/jsjkx.210100181 |
[15] | 陆要要, 袁家斌, 何珊, 王天星. 基于超分辨率重建的低质量视频人脸识别方法 Low-quality Video Face Recognition Method Based on Super-resolution Reconstruction 计算机科学, 2021, 48(11A): 295-302. https://doi.org/10.11896/jsjkx.201200159 |
|