计算机科学 ›› 2018, Vol. 45 ›› Issue (6A): 206-209.

• 模式识别与图像处理 • 上一篇    下一篇

一种人手背静脉特征识别方法

严娇娇,种兰祥,李婷   

  1. 西北大学信息科学与技术学院 西安710127
  • 出版日期:2018-06-20 发布日期:2018-08-03
  • 作者简介:严娇娇(1995-),女,硕士,主要研究方向为数字图像处理、模式识别,E-mail:jiaojiao4412@163.com(通信作者);种兰祥(1958-),男,教授,硕士生导师,主要研究方向为虚拟仪器技术;李 婷(1992-),女,硕士,主要研究方向为数字图像处理。

Algorithm for Human Dorsal Vein FeatureIdentification

YAN Jiao-jiao, CHONG Lan-xiang,LI Ting   

  1. College of Information Science and Technology,Northwest University,Xi’an 710127,China
  • Online:2018-06-20 Published:2018-08-03

摘要: 针对目前手背静脉图像识别采用细化和骨架操作等提取结构特征易造成静脉结构细节丢失和特征点误判等问题,提出一种基于方向梯度直方图(HOG)的手背静脉特征识别方法。采用生物特征识别的一般流程,对手背静脉图像灰度进行归一化和滤波增强等预处理后,直接对手背静脉灰度图像进行二级小波包分解,提取低频子带图的HOG纹理特征,最后采用K近邻分类器实现个人身份识别。利用自行建立的手背静脉图像数据库对所提方法进行验证,结果证明了算法的有效性,其正确识别率为95%,应用前景广阔。

关键词: 手背静脉, 图像数据库, 小波包分解, HOG特征, K近邻分类器

Abstract: For the current hand vein image recognition using the extraction structure features such as refinement and skeleton operations,it’s easy to cause the loss of vein structure details and misjudgment of feature points,this paper proposed a hand vein feature recognition algorithm based on gradient histogram gradient (HOG).Adopting general biometric identification process,this algorithm extracts the HOG texture feature of the low-frequency sub-band graph by the directly decomposing two-level wavelet packet after the hand dorsal vein image is preprocessed by image grey normalization pretreatment and filtering enhancement.Then,the personal identity is recognized by using K neighbor classifier.This algorithm was verified finally by using self-established dorsal vein image database.The experimental results show that the proposed algorithm is effective and its correct recognition rate is 95%,and its application prospect is broad.

Key words: Hand vein, Image database, Wavelet packet decomposition, HOG feature, K neighbor classifier

中图分类号: 

  • TP391
[1]赵士伟,张如彩,王月明,等.生物特征识别技术综述[J].中国安防,2015(7):79-86.
[2]郭凯.生物识别技术在社保领域的应用[J].电子技术与软件工程,2017(9):257.
[3]刘元庆.基于指纹识别技术的考务管理终端在国家级教育考试中的应用研究—以徐州考区为例[J].信息技术与信息化,2016(12):36-38.
[4]宋丹,黄旭.生物识别技术及其在金融支付安全领域的应用[J].信息安全研究,2016(1):27-32.
[5]武卫.生物识别技术在机场安保领域的应用[J].中国民用航空,2012(8):16-19.
[6]ZHANG Q,ZHANG X.Research of Key Algorithm in the Technology of Fingerprint Identification [M].IEEE,2010:282-284.
[7]JAFRI R,ARABNIA H R.A Survey of Face Recognition Techniques[J].Journal of Information Processing Systems,2010,5(2):41-68.
[8]李海青,孙哲南,谭铁牛,等.虹膜识别技术进展与趋势[J].信息安全研究,2016(1):40-43.
[9]AKRAM M,AWAN H,KHAN A.Dorsal hand veins based person identification[C]∥IEEE International Conference on Image Processing Theory,Tools and Applications.IEEE,2014:1-6.
[10]HUANG D,ZHU X,WANG Y,et al.Dorsal hand vein recognition via hierarchical combination of texture and shape clues [J].Neurocomputing,2016,214(C):815-828.
[11]张成浩.基于手背静脉的身份识别技术研究[D].哈尔滨:哈尔滨理工大学,2017.
[12]DING Y,ZHANG D,WANG K.A study of hand vein recognition method[C]∥Proceedings of the IEEE International Confe-rence on Mechatronics & Automation.NiagaraFalls,IEEE,2005:2106-2110.
[13]屈冰广.基于基准点和NMI的手背静脉识别算法研究[D].天津:天津理工大学,2016.
[14]WANG Y,LIAO W.Hand vein recognition based on feature coding[C]∥Proceedings of the 7th Chinese Conference on Biometric Recognition,LNCS 7701.Piscataway:IEEE Press,2012:165-175.
[15]ZHU X,HUANG D,WANG Y.Hand dorsal vein recognition based on shape representation of the venous network[C]∥14th Pacific-Rim Conference on Multimedia,PCM 2013.LNCS,2013,8294:158-169.
[16]WU K,LEE J,LO T,et al.A secure palm vein recognition system[J].Journal of Systems and Software,2013,86(11):2870-2876.
[17]任桐慧,刘富,姜守坤,等.基于特征点距离的手背静脉特征融合方法[J].吉林大学学报(信息科学版),2016,34(1):73-78.
[18]田宏亮.基于原点静矩向量的手背静脉识别技术研究[D].开封:河南大学,2010.
[19]HU Y,WANG Z,YANG X,et al.Hand vein recognition based on the connection lines of reference point and feature point[J].Infrared Physics and Technology,2014,62:110-114.
[20]雷芸.人体手背图像中的静脉纹路特征提取优化算法[J].计算机仿真,2015(8):435-438.
[21]岂兴明,周建兴,矫津毅.LabVIEW 8.2中文版入门与典型实例[M].北京:人民邮电出版社,2010.
[22]TANG Y,HUANG D,WANG Y.Hand-dorsa vein recognition based on multi-level keypoint detection and local feature matching[C]∥21st International Conference on Pattern Recognition(ICPR 2012).2012:2837-2840.
[23]林喜荣,庄波,苏晓生.人体手背静脉血管图像的特征提取及匹配[J].清华大学学报(自然科学版),2003,43(2):164-167.
[24]YEN G,LIN K.Wavelet packet feature extraction forvibration monitoring[J].IEEE Transactions on Industrial Electronics,2002,47(3):650-667.
[1] 高飞,丰敏强,汪敏倩,卢书芳,肖刚. 基于热点区域定义的人数统计方法研究[J]. 计算机科学, 2017, 44(Z6): 173-178.
[2] 段娜,王磊. 全局及其个性化区域特征的图像检索[J]. 计算机科学, 2016, 43(Z11): 205-207.
[3] 田仙仙,鲍泓,徐成. 一种改进HOG特征的行人检测算法[J]. 计算机科学, 2014, 41(9): 320-324.
[4] 周宣汝,袁家政,刘宏哲,杨睿. 基于HOG特征的交通信号灯实时识别算法研究[J]. 计算机科学, 2014, 41(7): 313-317.
[5] 陆星家,陈志荣,尹天鹤,杨帆. 基于HOG和Haar特征的行人追踪算法研究[J]. 计算机科学, 2013, 40(Z6): 199-203.
[6] . 基于Hadamard变换的高维图像检索方法[J]. 计算机科学, 2006, 33(3): 212-214.
[7] . 静态图像压缩标准中的可分级编码技术[J]. 计算机科学, 2006, 33(1): 255-259.
[8] 周学海 谌传立 等. 图像对象空间关系模型研究[J]. 计算机科学, 2001, 28(4): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[3] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[4] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[5] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[6] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[7] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[8] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[9] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[10] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .