计算机科学 ›› 2019, Vol. 46 ›› Issue (10): 1-6.doi: 10.11896/jsjkx.180901792

• 大数据与数据科学* •    下一篇

加入标签迁移的跨领域项目推荐算法

葛梦凡, 刘真, 王娜娜, 田靖玉   

  1. (北京交通大学计算机与信息技术学院 北京100044)
  • 收稿日期:2018-09-22 修回日期:2019-03-10 出版日期:2019-10-15 发布日期:2019-10-21
  • 通讯作者: 刘真,女,副教授,硕士生导师,E-mail:zhliu@bjtu.edu.cn。
  • 作者简介:葛梦凡 女,硕士生,主要研究方向为推荐系统,E-mail:16120365@bjtu.edu.cn;王娜娜 硕士生,主要研究方向为推荐系统;田靖玉 硕士生,主要研究方向为推荐系统。
  • 基金资助:
    本文受国家重点研发计划(2016YFB1200100),中央高校基本科研业务费专项(2017JBM024)资助。

Cross-domaing Item Recommendation Algorithm Including Tag Transfer

GE Meng-fan, LIU Zhen, WANG Na-na, TIAN Jing-yu   

  1. (School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China)
  • Received:2018-09-22 Revised:2019-03-10 Online:2019-10-15 Published:2019-10-21

摘要: 大多数推荐算法常采用基于迁移学习的跨领域推荐技术,借助辅助领域的丰富数据信息来解决传统单域推荐中普遍存在的数据稀疏等问题。但若迁移的知识比较单一,没有结合用户行为,则往往会在目标领域导致负迁移、推荐结果不佳等问题。因此,考虑结合其他知识来辅助完成目标领域的学习任务。利用用户异构行为改善推荐结果,正是近年来的新兴研究热点之一。在用户数据中,标签与用户的真实偏好相关,通常能够反映用户或项目的部分隐式特征。通过结合迁移学习及用户标签数据,文中提出了基于标签迁移的跨领域项目推荐算法ITTCF(Item-based Tag Transfer Collaborative Filtering)。该算法摒弃了在跨领域迁移推荐中仅对评分模式进行挖掘迁移的单一辅助方式,将用户行为反馈与数字评分相结合,融合了评分模式和标签这两种异构用户行为。在多个数据集中的实验结果均表明,ITTCF具有更好的RMSEMAE值,较传统算法分别提升了1.61%~6.67%和1.97%~8.83%。

关键词: 迁移学习, 跨领域推荐, 标签, 基于项目的协同过滤

Abstract: Most recommendation algorithms often use cross-domain recommendation technology based on transfer lear-ning and rich data in the auxiliary domain to solve the problems such as data sparse commonly existing in traditional single domain recommendation.However,if the transtered knowledge is relatively simple without combining user beha-vior,it will lead to the problems such as negative transfer and poor recommendation results.Therefore,it is possible to combine other knowledge to assist the learning tasks in target domain.Using user heterogeneous behavior to improve recommendation results is one of the emerging research hotspots in recent years.For user data,tags are related to the real user preferences,which can reflect some implicit features of user or item.In light of this,this paper proposed a cross-domain item recommendation algorithm ITTCF(Item-based Tag Transfer Collaborative Filtering)based on tag transfer.Instead of single auxiliary moded of performing mining and migration for rating pattern in cross-domain recommendation,this method combines user behavior feedback and numeric ratings,and fuses two typical user behaviors:ra-ting patterns and tags.Experimental results on multiple datasets show that ITTCF has lower RMSE and MAE values,and its performance is 1.61% to 6.67% and 1.97% to 8.83% higher respectively than traditional algorithms.

Key words: Transfer learning, Cross-domain recommendation, Tag, Item-based collaborative

中图分类号: 

  • TP391.9
[1]BELLOGÍN A,CANTADOR I,CASTELLS P.A comparative study of heterogeneous item recommendations in social systems[J].Information Sciences,2013,221(1):142-169.
[2]IVÁN C,VALLET D.Content-based recommendation in social tagging systems[C]//ACM Conference on Recommender Systems.ACM,2010:237-240.
[3]PAN W.A survey of transfer learning for collaborative recommendation with auxiliary data[J].Neurocomputing,2016,177(C):447-453.
[4]MA F,WANG W,DENG Z.TagRank:A New Tag Recommendation Algorithm and Recommender Enhancement with Data Fusion Techniques[M]//Social Media Retrieval and Mining.Berlin:Springer,2013:80-91.
[5]CREMONESI P,TRIPODI A.Cross-Domain Recommender Systems[C]//11th IEEE International Conference on Data Mining Workshops.IEEE Computer Society,2011:496-503.
[6]CHEN L,ZHENG J,GAO M,et al.TLRec:Transfer Learning for Cross-Domain Recommendation[C]//2017 IEEE International Conference on Big Knowledge (ICBK).IEEE Computer Society,2017:167-172.
[7]ZHUANG F,LUO P,XIONG H,et al.Cross-Domain Learning from Multiple Sources:A Consensus Regularization Perspective[J].IEEE Transactions on Knowledge & Data Engineering,2010,22(12):1664-1678.
[8]TIROSHI A,KUFLIK T.Domain Ranking for Cross Domain Collaborative Filtering[M]//User Modeling,Adaptation,and Personalization.Berlin:Springer,2012:328-333.
[9]LONI B,SHI Y,LARSON M,et al.Cross-domain collaborative filtering with factorization machines[C] //European Conference on Information Retrieval.Springer,2014:656-661.
[10]AZAK M.Crossing:A Framework to Develop Knowledge-based Recommenders in Cross Domains[D].Middle East Technical University,2010.
[11]KAMINSKAS M,RICCI F.A generic semantic-based frame-work for cross-domain recommendation[C]//International Workshop on Information Heterogeneity and Fusion in Recommender Systems.ACM,2011:25-32.
[12]SHI Y,LARSON M.Tags as bridges between domains:improving recommendation with tag-induced cross-domain collaborative filtering[C]//19th International Conference on User Modeling,Adaption and Personalization.Springer,2011:305-316.
[13]WAN J,WANG X,YIN Y,et al.Transfer Learning in Collaborative Filtering for Sparsity Reduction Via Feature Tags Learning Model[C]//Computer Science and Technology.2015:56-60.
[14]ADAMS R P,DAHL G E,MURRAY I.Incorporating side information into probabilistic matrix factorization using Gaussian processes[C]//Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence.ACM,2010:1-9.
[15]PAN W,XIANG E W.Transfer learning in collaborative filtering with uncertain ratings[C]//Twenty-Sixth AAAI Conference on Artificial Intelligence.AAAI Press,2012:662-668.
[16]LI B,YANG Q,XUE X.Can Movies and Books Collaborate? Cross-Domain Collaborative Filtering for Sparsity Reduction[C]//Proceedings of 2009 International Joint Conference on Artificial Intelligence.Morgan Kaufmann,2009:2052-2057.
[17]LI B,YANG Q,XUE X.Transfer learning for collaborative filtering via a rating-matrix generative model[C]//International Conference on Machine Learning.ACM,2009:617-624.
[18]VIG J,SEN S,RIEDL J.Tagsplanations:explaining recommendations using tags[C]//International Conference on Intelligent User Interfaces.ACM,2009:47-56.
[19]SALTON G,BUCKLEY C.Term-weighting approaches in automatic text retrieval[J].Information Processing & Management,1988,24(88):513-523.
[20]SHEPITSEN A,GEMMELL J,MOBASHER B,et al.Personali-zed recommendation in social tagging systems using hierarchical clustering[C]//Proceedings of the 2008 ACM Conference on Recommender Systems(RecSys 2008).ACM,2008:259-266.
[21]HARPER F M,KONSTAN J A.The MovieLens Datasets:History and Context[J].ACM Transactions on Interactive Intelligent Systems,2016,5(4):1-19.
[22]WINLAW M,HYNES M B,CATERINI A,et al.Algorithmic Acceleration of Parallel ALS for Collaborative Filtering:Spee-ding up Distributed Big Data Recommendation in Spark[C]//IEEE International Conference on Parallel and Distributed Systems.IEEE,2016:682-691.
[23]BELL R M.Lessons from the Netflix prize challenge[J].ACM SIGKDD Explorations Newsletter,2007,9(2):75-79.
[1] 陈洁婷, 王维莹, 金琴. 弹幕信息协助下的视频多标签分类[J]. 计算机科学, 2021, 48(1): 167-174.
[2] 欧阳鹏, 陆璐, 张凡龙, 邱少健. 基于迁移学习和过采样技术的跨项目克隆代码一致性维护需求预测[J]. 计算机科学, 2020, 47(9): 10-16.
[3] 袁晨晖, 程春玲. 基于PE散度实例过滤的深度域适应方法[J]. 计算机科学, 2020, 47(8): 151-156.
[4] 罗婷瑞, 贾建, 张瑞. 基于可调Q因子小波变换和迁移学习的癫痫脑电信号检测[J]. 计算机科学, 2020, 47(7): 199-205.
[5] 余孟池, 牟甲鹏, 蔡剑, 徐建. 噪声标签重标注方法[J]. 计算机科学, 2020, 47(6): 79-84.
[6] 王青松, 姜富山, 李菲. 大数据环境下基于关联规则的多标签学习算法[J]. 计算机科学, 2020, 47(5): 90-95.
[7] 郑伟哲, 仇鹏, 韦娟. 弱标签环境下基于多尺度注意力融合的声音识别检测[J]. 计算机科学, 2020, 47(5): 120-123.
[8] 刘晓玲,刘柏嵩,王洋洋,唐浩. 基于深度学习的多标签生成研究进展[J]. 计算机科学, 2020, 47(3): 192-199.
[9] 吴磊,岳峰,王含茹,王刚. 一种融合科研人员标签的学术论文推荐方法[J]. 计算机科学, 2020, 47(2): 51-57.
[10] 耿蕾蕾, 崔超然, 石成, 申朕, 尹义龙, 冯仕红. 基于深度多任务学习的社交图像标签和分组联合推荐[J]. 计算机科学, 2020, 47(12): 177-182.
[11] 李兆斌, 崔钊, 魏占祯, 赵洪, 郭超. 基于物理层信道特征的无线网络认证机制[J]. 计算机科学, 2020, 47(12): 267-272.
[12] 陈建强, 秦娜. 基于卷积神经网络的焊接装配特征识别研究[J]. 计算机科学, 2020, 47(11A): 215-218.
[13] 刘俊琦, 李智, 张学阳. 基于信息熵和残差神经网络的多层次船只目标鉴别方法[J]. 计算机科学, 2020, 47(11A): 253-257.
[14] 杨洋, 邸一得, 刘俊晖, 易超, 周维. 基于张量分解的排序学习在个性化标签推荐中的研究[J]. 计算机科学, 2020, 47(11A): 515-519.
[15] 王胜, 张仰森, 张雯, 蒋玉茹, 张睿. 基于SL-LDA的领域标签获取方法[J]. 计算机科学, 2020, 47(11): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[2] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[3] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[4] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[5] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[6] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[7] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[8] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[9] 王振朝,侯欢欢,连蕊. 抑制CMT中乱序程度的路径优化方案[J]. 计算机科学, 2018, 45(4): 122 -125 .
[10] 杨羽琦,章国安,金喜龙. 车载自组织网络中基于车辆密度的双簇头路由协议[J]. 计算机科学, 2018, 45(4): 126 -130 .