计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 197-203.doi: 10.11896/jsjkx.201200263

• 计算机图形学&多媒体 • 上一篇    下一篇

基于图像分块与特征融合的户外图像天气识别

左杰格, 柳晓鸣, 蔡兵   

  1. 大连海事大学信息科学技术学院 辽宁 大连116026
  • 收稿日期:2020-12-30 修回日期:2021-04-09 出版日期:2022-03-15 发布日期:2022-03-15
  • 通讯作者: 柳晓鸣(lxmdmu@dlmu.edu.cn)
  • 作者简介:(1204655420@qq.com)
  • 基金资助:
    国家自然科学基金(62001078);福建海事局基金(2018Z0093)

Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion

ZUO Jie-ge, LIU Xiao-ming, CAI Bing   

  1. School of Information Science and Technology,Dalian Maritime University,Dalian,Liaoning 116026,China
  • Received:2020-12-30 Revised:2021-04-09 Online:2022-03-15 Published:2022-03-15
  • About author:ZUO Jie -ge,born in 1997,postgraduate.Her main research interests include videoimage processing and image quality assessment.
    LIU Xiao -ming,born in 1959,professor.His main research interests include traffic electronic information system,navigation and radar information system.
  • Supported by:
    National Natural Science Foundation of China(62001078) and Maritime Safety Administration Foundation of Fujian Province,China(2018Z0093).

摘要: 在视频监控及智能交通等领域,雾、雨、雪等恶劣天气会严重影响视频图像能见度,因此快速识别出当前的天气情况,并自适应地对监控视频进行清晰化处理极为重要。针对传统天气识别方法效果差以及天气图像数据集缺乏的问题,构建了一个多类别天气图像分块数据集,并提出了一种基于图像分块与特征融合的天气识别算法。该算法基于传统方法提取平均梯度、对比度、饱和度、暗通道4种特征作为天气图像的浅层特征,基于迁移学习对VGG16预训练模型进行微调,提取微调模型的全连接层特征作为天气图像的深层特征,将天气图像浅层特征与深层特征融合作为最终特征用于训练Softmax分类器,实现对雾、雨、雪、晴4类天气图像的识别。实验结果表明,所提算法能达到99.26%的识别准确率,并且可作为天气识别模块应用于自适应视频图像清晰化处理系统。

关键词: 卷积神经网络, 迁移学习, 特征融合, 特征提取, 天气识别, 图像分块

Abstract: In video surveillance and intelligent traffic,bad weather such as foggy,rainy and snowy can seriously affect the visibility of video images.Therefore,it is very important to quickly identify the current weather conditions and make adaptive clearness processing of surveillance videos.Aiming at the problems of poor effect of traditional weather recognition methods and lack of weather image data sets,a multi-class weather image blocks data set is constructed,and a weather recognition algorithm based on image blocks and feature fusion is proposed.The algorithm uses traditional methods to extract four features,namely average gradient,contrast,saturation and dark channel,which are taken as the shallow features of weather images.The algorithm uses transfer learning to fine -tune the VGG16 pre-training model,and extracts the full-connection layer features of the fine-tuning model,which are taken as the deep features of the weather image.The shallow and deep features of weather images are fused and used as the final features to train the Softmax classifier.The classifier can realize the recognition of foggy,rainy,snowy and sunny wea-ther images. Experimental results show that the recognition accuracy of the proposed algorithm can reach 99.26%,and the algorithm can be used as a weather recognition module in the adaptive video image sharpening system.

Key words: Convolutional neural network, Feature extraction, Feature fusion, Image blocks, Transfer learning, Weather recognition

中图分类号: 

  • TP391.41
[1]RIVERO J,GERBICH T,TEILUF V,et al.Weather Classification Using an Automotive LIDAR Sensor Based on Detections on Asphalt and Atmosphere[J].Sensors (Basel,Switzerland),2020,20(15):1-20.
[2]ZHANG Z,MA H D,FU H Y,et al.Scene-free multi-classweather classification on single images[J].Neurocomputing,2016,207(26):365-373.
[3]GUERRA J C V,KHANAM Z,EHSAN S,et al.Weather Clas-sification:A new multi-class dataset,data augmentation approach and comprehensive evaluations of convolutional neural networks[C]//2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).Edinburgh,UK,2018:305-310.
[4]WANG Y,LI Y X.Research on Multi-class Weather Classification Algorithm Based on Multi-model Fusion[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference(ITNEC).Chongqing,China,2020:2251-2255.
[5]FANG C,LV C,CAI F,et al.Weather Classification for Outdoor Power Monitoring based on Improved SqueezeNet[C]//2020 5th International Conference on Information Science,Computer Technology and Transportation (ISCTT).Shenyang,China,2020:11-15.
[6]YE R,YAN B,MI J.BIVS:Block Image and Voting Strategy for Weather Image Classification[C]//2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET).Beijing,China,2020:105-110.
[7]RAO Y M,LU J W,LIN J,et al.Runtime Network Routing for Efficient Image Classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(10):2291-2304.
[8]GUO Z Q,HU Y W,LIU P,et al.Outdoor weather image classification based on feature fusion[J].Journal of Computer Applications,2020,40(4):1023-1029.
[9]CHU W T,ZHENG X Y,DING D S.Camera as Weather Sensor:Estimating Weather Information from Single Images[J].Journal of Visual Communication and Image Representation,2017,46:233-249.
[10]LIN D,LU C W,HUANG H,et al.RSCM:Region Selection and Concurrency Model for Multi-Class Weather Recognition[J].IEEE Transactions on Image Processing,2017,26(9):4154-4167.
[11]JIN L S,CHEN M,JIANG Y Y,et al.Multi-Traffic Scene Perception Based on Supervised Learning[J].IEEE Access,2018,6:4287-4296.
[12]HE K M,SUN J,TANG X O.Single Image Haze RemovalUsing Dark Channel Prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353.
[13]ARBANE M,BENLAMRI R,BRIK Y,et al.Transfer Learning for Automatic Brain Tumor Classification Using MRI Images[C]//2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being(IHSH).Boumerdes,Algeria,2021:210-214.
[14]RIBANI R,MARENGONI M.A Survey of Transfer Learning for Convolutional Neural Networks[C]//2019 32nd SIBGRAPI Conference on Graphics,Patterns and Images Tutorials(SIBGRAPIT).Rio de Janeiro,Brazil,2019:47-57.
[15]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
[16]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Advances In Neural Information Processing Systems,2012,25(2):1097-1105.
[17]KINGMA D P,BA J L.Adam:A Method for Stochastic Optimization[C]//International Conference on Learning Representations 2015(ICLR 2015).San Diego,CA,2015:1-15.
[18]LIU W B,ZOU Z Y,XING W W.Feature Fusion Methods in Pattern Classification[J].Journal of Beijing University of Posts and Telecommunications,2017,40(4):1-8.
[19]SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston,MA,2015:1-9.
[20]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learningfor Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,2016:770-778.
[21]GOSWAMI S.Towards Effective Categorization of WeatherImages using Deep Convolutional Architecture[C]//2020 International Conference on Industry 4.0 Technology (I4Tech).Pune,India,2020:76-79.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[4] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[5] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[6] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[7] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[8] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[9] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[10] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[11] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[14] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[15] 郁舒昊, 周辉, 叶春杨, 王太正.
SDFA:基于多特征融合的船舶轨迹聚类方法研究
SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion
计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!