计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 197-203.doi: 10.11896/jsjkx.201200263
左杰格, 柳晓鸣, 蔡兵
ZUO Jie-ge, LIU Xiao-ming, CAI Bing
摘要: 在视频监控及智能交通等领域,雾、雨、雪等恶劣天气会严重影响视频图像能见度,因此快速识别出当前的天气情况,并自适应地对监控视频进行清晰化处理极为重要。针对传统天气识别方法效果差以及天气图像数据集缺乏的问题,构建了一个多类别天气图像分块数据集,并提出了一种基于图像分块与特征融合的天气识别算法。该算法基于传统方法提取平均梯度、对比度、饱和度、暗通道4种特征作为天气图像的浅层特征,基于迁移学习对VGG16预训练模型进行微调,提取微调模型的全连接层特征作为天气图像的深层特征,将天气图像浅层特征与深层特征融合作为最终特征用于训练Softmax分类器,实现对雾、雨、雪、晴4类天气图像的识别。实验结果表明,所提算法能达到99.26%的识别准确率,并且可作为天气识别模块应用于自适应视频图像清晰化处理系统。
中图分类号:
[1]RIVERO J,GERBICH T,TEILUF V,et al.Weather Classification Using an Automotive LIDAR Sensor Based on Detections on Asphalt and Atmosphere[J].Sensors (Basel,Switzerland),2020,20(15):1-20. [2]ZHANG Z,MA H D,FU H Y,et al.Scene-free multi-classweather classification on single images[J].Neurocomputing,2016,207(26):365-373. [3]GUERRA J C V,KHANAM Z,EHSAN S,et al.Weather Clas-sification:A new multi-class dataset,data augmentation approach and comprehensive evaluations of convolutional neural networks[C]//2018 NASA/ESA Conference on Adaptive Hardware and Systems (AHS).Edinburgh,UK,2018:305-310. [4]WANG Y,LI Y X.Research on Multi-class Weather Classification Algorithm Based on Multi-model Fusion[C]//2020 IEEE 4th Information Technology,Networking,Electronic and Automation Control Conference(ITNEC).Chongqing,China,2020:2251-2255. [5]FANG C,LV C,CAI F,et al.Weather Classification for Outdoor Power Monitoring based on Improved SqueezeNet[C]//2020 5th International Conference on Information Science,Computer Technology and Transportation (ISCTT).Shenyang,China,2020:11-15. [6]YE R,YAN B,MI J.BIVS:Block Image and Voting Strategy for Weather Image Classification[C]//2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET).Beijing,China,2020:105-110. [7]RAO Y M,LU J W,LIN J,et al.Runtime Network Routing for Efficient Image Classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2019,41(10):2291-2304. [8]GUO Z Q,HU Y W,LIU P,et al.Outdoor weather image classification based on feature fusion[J].Journal of Computer Applications,2020,40(4):1023-1029. [9]CHU W T,ZHENG X Y,DING D S.Camera as Weather Sensor:Estimating Weather Information from Single Images[J].Journal of Visual Communication and Image Representation,2017,46:233-249. [10]LIN D,LU C W,HUANG H,et al.RSCM:Region Selection and Concurrency Model for Multi-Class Weather Recognition[J].IEEE Transactions on Image Processing,2017,26(9):4154-4167. [11]JIN L S,CHEN M,JIANG Y Y,et al.Multi-Traffic Scene Perception Based on Supervised Learning[J].IEEE Access,2018,6:4287-4296. [12]HE K M,SUN J,TANG X O.Single Image Haze RemovalUsing Dark Channel Prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. [13]ARBANE M,BENLAMRI R,BRIK Y,et al.Transfer Learning for Automatic Brain Tumor Classification Using MRI Images[C]//2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being(IHSH).Boumerdes,Algeria,2021:210-214. [14]RIBANI R,MARENGONI M.A Survey of Transfer Learning for Convolutional Neural Networks[C]//2019 32nd SIBGRAPI Conference on Graphics,Patterns and Images Tutorials(SIBGRAPIT).Rio de Janeiro,Brazil,2019:47-57. [15]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [16]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Advances In Neural Information Processing Systems,2012,25(2):1097-1105. [17]KINGMA D P,BA J L.Adam:A Method for Stochastic Optimization[C]//International Conference on Learning Representations 2015(ICLR 2015).San Diego,CA,2015:1-15. [18]LIU W B,ZOU Z Y,XING W W.Feature Fusion Methods in Pattern Classification[J].Journal of Beijing University of Posts and Telecommunications,2017,40(4):1-8. [19]SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston,MA,2015:1-9. [20]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learningfor Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV,2016:770-778. [21]GOSWAMI S.Towards Effective Categorization of WeatherImages using Deep Convolutional Architecture[C]//2020 International Conference on Industry 4.0 Technology (I4Tech).Pune,India,2020:76-79. |
[1] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
[2] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[3] | 方义秋, 张震坤, 葛君伟. 基于自注意力机制和迁移学习的跨领域推荐算法 Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning 计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011 |
[4] | 陈泳全, 姜瑛. 基于卷积神经网络的APP用户行为分析方法 Analysis Method of APP User Behavior Based on Convolutional Neural Network 计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121 |
[5] | 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥. 基于注意力机制的医学影像深度哈希检索算法 Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism 计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153 |
[6] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[7] | 金方焱, 王秀利. 融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取 Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM 计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190 |
[8] | 张源, 康乐, 宫朝辉, 张志鸿. 基于Bi-LSTM的期货市场关联交易行为检测方法 Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM 计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304 |
[9] | 张颖涛, 张杰, 张睿, 张文强. 全局信息引导的真实图像风格迁移 Photorealistic Style Transfer Guided by Global Information 计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036 |
[10] | 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨. 基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨 Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism 计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224 |
[11] | 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮. 基于DNGAN的磁共振图像超分辨率重建算法 Super-resolution Reconstruction of MRI Based on DNGAN 计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105 |
[12] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[13] | 刘月红, 牛少华, 神显豪. 基于卷积神经网络的虚拟现实视频帧内预测编码 Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network 计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179 |
[14] | 徐鸣珂, 张帆. Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法 Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition 计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085 |
[15] | 郁舒昊, 周辉, 叶春杨, 王太正. SDFA:基于多特征融合的船舶轨迹聚类方法研究 SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion 计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253 |
|