计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 71-75.

• 综述研究 • 上一篇    下一篇

大数据时代——从冯·诺依曼到计算存储融合

邱赐云, 李礼, 张欢, 吴佳   

  1. 上海威固信息技术股份有限公司 上海201702
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 通讯作者: 邱赐云(1977-),男,博士,高级工程师,主要研究方向为计算机体系结构与算法、计算存储融合技术,E-mail:eric.qiu@vpx-inc.com
  • 作者简介:李 礼(1981-),男,博士,高级工程师,CCF会员,主要研究方向为大数据处理与机器学习,E-mail:li.lee@vpx-inc.com;张 欢(1982-),男,硕士,高级工程师,主要研究方向为计算机体系结构、数据科学,E-mail:huan.zhang@vpx-inc.com;吴 佳(1982-),男,硕士,高级工程师,主要研究方向为固态存储技术,E-mail:jack.wu@vpx-inc.com

Age of Big Data:from Von Neumann to Computing Storage Fusion

QIU Ci-yun, LI Li, ZHANG Huan, WU Jia   

  1. Shanghai V&G Information System,Ltd,Shanghai 201702,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 海量数据的出现和硬件计算能力的提升,催生了第三次人工智能的发展热潮,大数据时代来临。首先,分析了拥有冯·诺依曼体系结构的计算机在大数据时代遭遇的存储墙、带宽墙和功耗高问题,引出为适应和满足大数据处理需求的计算机体系结构的发展趋势;接着,分析计算机体系结构层面的计算存储融合技术、软硬件结构、offloading算法的设计思路与技术特点,以及在商业系统中的应用,为高性能计算、数据中心建设和智能SSD产品设计等提供启发意义;分析微观层面基于硅穿孔的3D堆叠封装技术和最新的产业动态;最后,阐述代表计算存储一体化发展目标的类脑计算和最新的研究进展。

关键词: 计算存储融合, 存储墙, 近端数据处理, 3D堆叠, 智能固态硬盘

Abstract: The emergence of massive data and improvement of computing power aroused the 3rd artificial intelligence booming,and the age of big data arrived.This paper firstly analyzed firstly that computer with Von Neumann architecture faces the problem of memory wall,bandwidth wall and high power consumption in the age of big data,which evokes the changing of computer architecture development trend to match the requirement of big data processing.Then,the computing and storage fusion in computer architecture level,software and hardware structure,spirit of offloading algorithm,technology feature background,and the commercial application were analyzed,to enlighten the product design such as high performance computing,data centre setup and design of smart SSD.In micro level,the 3D stack package technology based on through silicon via was analyzed and the latest industry applications were introduced.Finally,artificial cognitive computation which represents the computing and storage fusion development goal and the latest research status were summarized.

Key words: Computing and storage fusion, Memory wall, Near-data processing, 3D stack, Smart solid state drives

中图分类号: 

  • TP303
[1]WULF W A,MCKEE S A.Hitting the memory wall:Implications of the obvious[J].SIGARCH Computer Architecture News,1995,23(1):20-24.
[2]TIWARI D,VAZHKUDAI S,KIM Y,et al.Reducing data movement costs using energy efficient,active computation on SSD[C]∥USENIX Conference on Power-aware Computing & Systems.2012:4.
[3]ROGERS B M,KRISHNA A,BELL G B,et al.Scaling the bandwidth wall:Challenges in and avenues for CMP scaling[J].SIGARCH Computer Architecture News,2009,37(3):371-382.
[4]STANLEY-MARBELL P,CABEZAS V C,LUIJTEN R.Pinned to the walls:impact of packaging and application properties on the memory and power walls[C]∥2011 International Sympo-sium on Low Power Electronics and Design (ISLPED).2011:51-56.
[5]DENG Z X,XU C,CAI Q,et al.Reduced-Precision Memory Value Approximation for Deep Learning[Z].Hewlett Packard Labs,2015.
[6]RUSSELL J.Google Debuts TPU v2 and will Add to Google Cloud[EB/OL].https://www.hpcwire.com/ 2017/05/25/google-debuts-tpu-v2-will-add-google-cloud.
[7]STARKE W J,DALY D,BLANER B,et al.The cache and memory subsystems of the IBM POWER8 processor[J].IBM Journal of Research and Development,2015,59(1):1-3.
[8]JÜLICH SUPERCOMPUTING CENTRE.Blue Gene Active Storage Boosts I/O Performance at JSC[EB/OL].http://www.fz-juelich.de/sharedDocs/pressemitteilungen/UK/EN/2013/13-11-18bags.html.
[9]KGIL T,MUDGE T.FlashCache:A NAND flash memory file cache for low power web servers[C]∥International Conference on Compilers,Architecture,and Synthesis for Embedded Systems.2006:103-112.
[10]LEE B C,IPEK E,MUTLU O,et al.Architecting phase change memory as a scalable DRAM alternative[C]∥Proceedings of the 36th Annual International Symposium on Computer Architecture(ISCA’09).2009:2-13.
[11]Phase Change Memery[EB/OL].http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf.
[12]CHEN X,XIAO N,LIU F.Survey on I/O Stack for New Non-Volatile Memory[J].Journal of Computer Research & Development,2014,51(Suppl.):18-24.
[13]谢源.人工智能时代的计算机架构创新[C/OL].新智元·AI WORLD 2017 世界人工智能大会.http://www.sohu.com/a/207987558_473283.
[14]CHI P,LI S C,XU C,et al.PRIME:A Novel Processing-in-memory Architecture for Neural Network Computation in ReRAM-based Main Memory[C]∥ISCA.2016:27-39.
[15]李双辰,谢源.计算存储一体化芯片[J].中国计算机学会通讯,2018,14(2):16-19.
[16]SEBASTIAN A,TUMA T,PAPANDREOU N,et al.Temporal correlation detection using computational phase-change memory[J].Nature Communications,2017,8(1):1-10.
[17]SHAINER G.Intelligent networks:A new co-processor emerges
[EB/OL].The Next Platform,http://www.nextplatform. com/2016/03/02/intelligent-networks-a-new-co-processor-emerges.
[18]TRADER T.Mellanox touts arrival of intelligent interconnect
[EB/OL].https://www.hpcwire.com/?s=Mellanox+touts+arrival+of+intelligent+interconnect.
[19]WANG J G,PARK D,PAPAKONSTANTINOU Y,et al.SSD In-Storage Computing for Search Engines[J].IEEE Transactions on Computers,2016,PP(99):1.
[20]PARK D C,KEE Y S.In-Storage Computing for Hadoop Map-Reduce Framework:Challenges and Possibilities[J].IEEE Transactions on Computers,2016,PP(99):1.
[21]WANG J,PARK D,KEE Y S,et al.SSD In-Storage Computing for List Intersection[C]∥DaMoN.2016:1-8.
[22]DE A,GOKHALE M,GUPTA R,et al.Minerva:Accelerating data analysis in next-generation SSDs[C]∥IEEE International Symposium on Field-programmable Custom Computing Machines.2013:9-16.
[23]BAE D,KIM J,KIM S,et al.Intelligent SSD:A turbo for big data mining[J].Computer Science & Information Systems,2013,13:1573-1576.
[24]LEE Y S,QUERO L C,LE Y,et al.Accelerating external sorting via on-the-fly data merge in active SSDs[C]∥Usenix Conference on Hot Topics in Storage & File Systems.2014.
[25]SESHADRI S.Willow:A user-programmable SSD[C]∥Usenix Conference on Operating Systems Design Implementation.2014:67-80.
[26]KIM S,OH H,PARK C,et al.Fast energy efficient scan inside flash memory[C]∥Proceedings of 2nd International Workshop Accelerating Data Management Systems Using Modern Processor Storage Architecture.2011:36-43.
[27]DO J,KEE Y S,PATEL J M,et al.Query processing on smart SSDs:Opportunities and challenges[C]∥ACM Sigmod International Conference Management of Data.2013:1221-1230.
[28]WOODS L,ISTV_AN Z,ALONSO G.Ibex—An intelligent storage engine with support for advanced SQL off-loading[J].Proceedings of the VLDB Endowment,2014,7(11):963-974.
[29]OHMACHT M,GSCHWIND M,BOYLE P,et al.The IBM Blue Gene/Q Compute Chip[J].IEEE Micro,2012,32(2):48-60.
[30]TERADATA Corporation.TERADATA extreme performance alliance[EB/OL].http://www.teradata.com/t/extreme-performance-appliance.
[31]CHRISTMAN G,JERNIGAN K.Oracle exadata white paper[M].500 Oracle Parkway,Redwood shores,CA,Oracle Corporation,2011.
[32]翁楚良,张树杰.计算与存储融合体系结构[J].中国计算机学会通讯,2014,10(4):24-29.
[33]WILLIAMS S,WATERMAN A,PATTERSON D.Roofline:An insightful visual performance model for multi-core architectures[J].ACM,2009,52(4):65-76.
[34]PATTY C C.Wafer-scale Assembly & Heterogeneous Integration Technologies for MMICs [C]∥IMS 2012 3D Integrated Circuit Workshop.2016.
[35]KIM Y J,JOSHI Y K,FEDOROV A G,et al.Thermal characterization of interlayer microfluidic cooling of three-dimensional integrated circuits with nonuniform heat flux[J].Journal of Heat Transfer,2010,132(4):2.
[36]余山.从脑网络到人工智能——类脑计算的机遇与挑战[J].科技导报,2016,34(7):75-77.
[37]CHUA L O.Memristor:the missing circuit element[J].IEEE Transactions on Circuit Theory,1971,18(5):507-519.
[38]JO S H,CHANG T,EBONG I,et al.Nanoscale Memristor Device as Synapse in Neuromorphic Systems[J].Nano Letter,2010,10(4):1297-1301.
[39]STRUKOV D B,SNIDER G S,STEWART D R,et al.The missing memristor found[J].Nature,2008,453:80-83.
[40]THOMAS A.Memristor-based neural networks[J].Journal of Physics D Applied Physics,2013,46(9):093001.
[41]MEROLLA P A,ARTHUR J V,ALVARE-ICAZA R,et al.Artificial brains:A million spiking-neuron integrated circuit with a scalable communication network and interface[J].Scien-ce,2014,345:668-673.
[1] 洪小玲, 万虎, 肖晓, 孙浩祥. 基于区块链的制造联盟系统[J]. 计算机科学, 2020, 47(6A): 369-374.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 编辑部. 新网站开通,欢迎大家订阅![J]. 计算机科学, 2018, 1(1): 1 .
[2] 雷丽晖,王静. 可能性测度下的LTL模型检测并行化研究[J]. 计算机科学, 2018, 45(4): 71 -75 .
[3] 孙启,金燕,何琨,徐凌轩. 用于求解混合车辆路径问题的混合进化算法[J]. 计算机科学, 2018, 45(4): 76 -82 .
[4] 张佳男,肖鸣宇. 带权混合支配问题的近似算法研究[J]. 计算机科学, 2018, 45(4): 83 -88 .
[5] 伍建辉,黄中祥,李武,吴健辉,彭鑫,张生. 城市道路建设时序决策的鲁棒优化[J]. 计算机科学, 2018, 45(4): 89 -93 .
[6] 史雯隽,武继刚,罗裕春. 针对移动云计算任务迁移的快速高效调度算法[J]. 计算机科学, 2018, 45(4): 94 -99 .
[7] 周燕萍,业巧林. 基于L1-范数距离的最小二乘对支持向量机[J]. 计算机科学, 2018, 45(4): 100 -105 .
[8] 刘博艺,唐湘滟,程杰仁. 基于多生长时期模板匹配的玉米螟识别方法[J]. 计算机科学, 2018, 45(4): 106 -111 .
[9] 耿海军,施新刚,王之梁,尹霞,尹少平. 基于有向无环图的互联网域内节能路由算法[J]. 计算机科学, 2018, 45(4): 112 -116 .
[10] 崔琼,李建华,王宏,南明莉. 基于节点修复的网络化指挥信息系统弹性分析模型[J]. 计算机科学, 2018, 45(4): 117 -121 .