Computer Science ›› 2014, Vol. 41 ›› Issue (10): 23-26.doi: 10.11896/j.issn.1002-137X.2014.10.005

Previous Articles     Next Articles

Submap and Adaptive Covariance Based Method for 2D Localization

ZHANG He,LIU Guo-liang,LI Nan-jun and HOU Zi-feng   

  • Online:2018-11-14 Published:2018-11-14

Abstract: Submap and adaptive covariance based 2D SLAM solution can not only achieve efficient loop-closure detection but also accurate localization.Firstly,the loop-closure is detected by efficiently matching 2D geometric features between local submaps.Unlike the previous methods which often use the number of the measure frames as the criteria of the division,we employed the number of features as the main criteria.To achieve accurate localization,we proposed an adaptive Kalman filter to estimate the final pose.Moreover,the prediction and observation covariance are adaptive and estimated by the scan-matching algorithm.Finally,if a loop-closure is detected,the optimized transformation and covariance from the backend can be fused directly in the Kalman filter.In the first experiment,the comparison between the two kinds of submap division mechanism verifies the validity of the proposed method.The second experiment shows that the proposed method can accurately localize the robot only using a single lidar.

Key words: 2D mobile robot,Submap division,Adaptive covariance,Loop closure detection,Localization

[1] Bengtsson O,Baerveldt A J.Robot localization based on scan-matchingestimating the covariance matrix for the idc algorithm[J].Robotics and Autonomous Systems,2003,44(1):29-40
[2] Blanco J L,Fern′andez-Madrigal J A,Gonzalez J.A new approach for large-scale localization and mapping:Hybrid metric-topological slam[C]∥2007 IEEE International Conference on Robotics and Automation.IEEE,2007:2061-2067
[3] Bosse M,Zlot R.Map matching and data association for large-scale two-dimensional laserscan-based slam[J].The InternationalJournal of Robotics Research,2008,27(6):667-691
[4] Howard A,Mataric M J,Sukhatme G.Relaxation on a mesh:a formalism for generalized localization[C]∥2001 IEEE/RSJ International Conference on Intelligent Robots and Systems.IEEE,2001,2:1055-1060
[5] Bosse M C.Atlas:a framework for large scale automated mapping and localization[D].Massachusetts Institute of Technology,2004
[6] Censi A.An accurate closed-form estimate of icp’s covariance[C]∥2007 IEEE International Conference on Robotics and Automation.IEEE,2007:3167-3172
[7] Censi A.An icp variant using a point-to-line metric[C]∥ICRA 2008.IEEE International Conference on Robotics and Automation.IEEE,2008:19-25 (下转第30页)(上接第26页)
[8] Schnabel R,Wahl R,Klein R.Efficient RANSAC for Point-Cloud Shape Detection[J].Computer Graphics Forum,2007,26(2):214-226
[9] Kummerle R,Grisetti G,Stras-dat H,et al.g2o:A generalframework for graph optimization[C]∥2011 IEEE International Conference on Robotics and Automation (ICRA).IEEE,2011:3607-3613
[10] Tipaldi G D,Arras K O.Flirt-interest regions for 2d range data[C]∥2010 IEEE International Conference on Robotics and Automation (ICRA).IEEE,2010:3616-3622
[11] Van Der Merwe R,Wan E A.The square-root unscented kalman filter for state and parameter-estimation[C]∥2001 IEEE International Conference on Acoustics,Speech,and Signal Processing,2001(ICASSP’01).IEEE,2001,6:3461-3464
[12] Zhang H,Hou Z,Li N,et al.A graph-based hierarchical slam framework for large-scale mapping[J].Intelligent Robotics and Applications,2012,7507:439-448
[13] Zlot R,Bosse M.Place recognition using keypoint similarities in 2D lidar maps[C]∥Experimental Robotics.Springer Berlin Heidelberg,2009:363-372
[14] Guivant J,Nebot E.Optimization of the simultaneous localiza-tion and map building algorithm for real time implementation[J].IEEE Transactions on Robotics and Automation,2001,17(3):242-257
[15] Nieto,Juan,Bailey T,et al.Scan-slam:Combining ekf-slam and scan correlation[C]∥Field and service robotics.Springer Berlin Heidelberg,2006:167-178
[16] Martinez-Cantin R,Castellanos J A.Unscented slam for large-scale outdoor environments[C]∥IEEE/RSJ Intl.Conf.on Intelligent Robots and Systems.2005:328-333
[17] Montemerlo M,Thrun S.Simultaneous localization and mappingwith unknown data association using FastSLAM[C]∥the Proceedings of the 2003 IEEE International Conference on Robotics & Automation (ICRA’03).IEEE,2003:1985-1991
[18] Eliazar A,Parr R.Dp-slam:Fast,robust simultaneous localiza-tion and mapping without predetermined landmarks[C]∥International Joint Conference on Artificial Intelligence.Lawrence Erlbaum Associates LTD,2003,18:1135-1142
[19] Olson E B.Real-time correlative scan matching[C]∥IEEE International Conference on Robotics and Automation(ICRA’09).IEEE,2009:4387-4393
[20] Olson E B.Robust and efficient robotic mapping[D].Massachusetts Institute of Technology,Department of Electrical Engineering and Computer Science,2008
[21] Borges G A,Aldon M J.Line extraction in 2d range images for mobile robotics[J].Journal of Intelligent & Robotic Systems,2004,40(3):267-297
[22] Nunez P,Vazquez-Martin R,del Toro J C,et al.Feature extrac-tion from laser scan data based on curvature estimation for mobile robotics[C]∥Proceedings 2006 IEEE International Conference on Robotics and Automation(ICRA 2006).IEEE,2006:1167-1172
[23] Li Y,Olson E B.Extracting general-purpose features from lidar data[C]∥2010 IEEE International Conference on Robotics and Automation (ICRA).IEEE,2010:1388-1393

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!